SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zak Dominik) "

Sökning: WFRF:(Zak Dominik)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abé, Christoph, et al. (författare)
  • Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group.
  • 2022
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 91:6, s. 582-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD.Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables.Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18
  •  
2.
  • Jurasinski, Gerald, et al. (författare)
  • Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law
  • 2024
  • Ingår i: AMBIO. - 0044-7447 .- 1654-7209. ; 53:7, s. 970-983
  • Tidskriftsartikel (refereegranskat)abstract
    • The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.
  •  
3.
  • Jurasinski, Gerald, et al. (författare)
  • From Understanding to Sustainable Use of Peatlands : The WETSCAPES Approach
  • 2020
  • Ingår i: SOIL SYSTEMS. - : MDPI. - 2571-8789. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Of all terrestrial ecosystems, peatlands store carbon most effectively in long-term scales of millennia. However, many peatlands have been drained for peat extraction or agricultural use. This converts peatlands from sinks to sources of carbon, causing approx. 5% of the anthropogenic greenhouse effect and additional negative effects on other ecosystem services. Rewetting peatlands can mitigate climate change and may be combined with management in the form of paludiculture. Rewetted peatlands, however, do not equal their pristine ancestors and their ecological functioning is not understood. This holds true especially for groundwater-fed fens. Their functioning results from manifold interactions and can only be understood following an integrative approach of many relevant fields of science, which we merge in the interdisciplinary project WETSCAPES. Here, we address interactions among water transport and chemistry, primary production, peat formation, matter transformation and transport, microbial community, and greenhouse gas exchange using state of the art methods. We record data on six study sites spread across three common fen types (Alder forest, percolation fen, and coastal fen), each in drained and rewetted states. First results revealed that indicators reflecting more long-term effects like vegetation and soil chemistry showed a stronger differentiation between drained and rewetted states than variables with a more immediate reaction to environmental change, like greenhouse gas (GHG) emissions. Variations in microbial community composition explained differences in soil chemical data as well as vegetation composition and GHG exchange. We show the importance of developing an integrative understanding of managed fen peatlands and their ecosystem functioning. 
  •  
4.
  • Sandin, Leonard, et al. (författare)
  • Working with Nature-Based Solutions: Synthesis and mapping of status in the Nordics
  • 2023
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The world is currently facing a biodiversity and climate crisis which are globally interlinked. Nature-based solutions (NBS), defined as “actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature” is part of the solution to these challenges. Here we give a status overview of nature-based solutions in the Nordic countries, obtained within the S-ITUATION project[1] focusing on 1) what is the current status of research on NBS in the Nordic countries? 2) what policy framework(s) exist for NBS in the Nordic countries? 3) what challenges do Nordic countries experience in the process of mainstreaming NBS? 4) what key examples of projects implementing NBS exist in the Nordic countries? We have done this using several approaches: 1) a review of the academic literature, providing insights on the status of research on NBS in the Nordic countries; 2) a grey literature review in each Nordic country, to describe the policy framework for NBS and practical implementation of NBS projects across the Nordic countries; 3) compilation of a Nordic NBS case projects catalogue, which contains implemented case projects from each Nordic country, using NBS in all major ecosystems: terrestrial (forests and agricultural land), freshwater, coastal and marine, to show the breadth of NBS used in the Nordic countries, 4) Nordic NBS stakeholder consultations.Research on NBS across the Nordics includes several research initiatives. Currently the most central research initiatives are the Nordic Council of Ministers programme on NBS, which is a focused four-year programme. Many Nordic universities and research institutes are also involved in different research projects focusing on or including NBS and there is an exponential interest from researchers in this area. Most of these research projects are targeting NBS in urban areas. In a structured peer-review of scientific publications using the term ‘nature-based solutions’, 64 research papers were found related to the Nordic countries. These studies varied from large-scale ecosystem-based approaches to small-scale NBS. Most of the studies assessed the NBS functions in relation to biophysical qualities, such as water retention capacity, flood risk reduction, health benefits and biodiversity contribution, but there were also studies focusing on potential economic benefits from NBS. Regarding policy frameworks it is evident that these are at different stages of development when it comes to mainstreaming the concept of NBS into policy across the Nordics. Norway and Sweden have adopted the term to a larger degree than Denmark, Finland and Iceland. Still, all five countries conserve, restore and work actively on developing sustainable use of nature, but use other terms (e.g., ‘blue-green infrastructures or solutions’, ‘restoration’, or ‘ecosystem services’) in their policies and guidelines.NBS governance and implementation is an area that is currently advancing rapidly. At the same time, there are still several challenges as well as also opportunities for using NBS to mitigate and adapt to climate change, protect biodiversity and ensure human well-being. Regarding challenges and gaps, we divide these into 1) natural-scientific and technical knowledge gaps, 2) economic shortcomings, 3) regulatory, governance, and policy challenges, and 4) weak stakeholder collaboration. In the project we have identified 54 key examples of projects implementing NBS in the Nordic countries. Most of these cases were related to freshwater, followed by urban/artificial NBS. The number of implemented NBS projects has increased, especially in the last couple of years. Our key messages and recommendations for future mainstreaming of NBS are: 1) clear political prioritization is needed to mainstream NBS into policy and practice, 2) appropriate institutional structures, procedures and policy instruments at all governance levels are essential to facilitate the implementation of NBS, 3) better funding structures for NBS are needed, 4) we need to develop common standards, long-term monitoring and better cost-benefit evaluations of NBS, and 5) the knowledge base in all phases of NBS projects needs to be strengthened.
  •  
5.
  • Shumilova, Oleksandra, et al. (författare)
  • Simulating rewetting events in intermittent rivers and ephemeral streams : A global analysis of leached nutrients and organic matter
  • 2019
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 25:5, s. 1591-1611
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy