SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zakian Virginia A) "

Sökning: WFRF:(Zakian Virginia A)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McDonald, Karin R., et al. (författare)
  • Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity
  • 2016
  • Ingår i: PLOS Genetics. - : Copernicus GmbH. - 1553-7390 .- 1553-7404. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5'-to-3' DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These data provide insight into mechanisms by which this evolutionarily conserved helicase helps preserve genome integrity.
  •  
2.
  • Sabouri, Nasim, et al. (författare)
  • The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage
  • 2014
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo.Results: We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites.Conclusions: In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.
  •  
3.
  • Bochman, Matthew L, et al. (författare)
  • Unwinding the functions of the Pif1 family helicases
  • 2010
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7864 .- 1568-7856. ; 9:3, s. 237-249
  • Tidskriftsartikel (refereegranskat)abstract
    • Helicases are ubiquitous enzymes found in all organisms that are necessary for all (or virtually all) aspects of nucleic acid metabolism. The Pif1 helicase family is a group of 5'-->3' directed, ATP-dependent, super family IB helicases found in nearly all eukaryotes. Here, we review the discovery, evolution, and what is currently known about these enzymes in Saccharomyces cerevisiae (ScPif1 and ScRrm3), Schizosaccharomyces pombe (SpPfh1), Trypanosoma brucei (TbPIF1, 2, 5, and 8), mice (mPif1), and humans (hPif1). Pif1 helicases variously affect telomeric, ribosomal, and mitochondrial DNA replication, as well as Okazaki fragment maturation, and in at least some cases affect these processes by using their helicase activity to disrupt stable nucleoprotein complexes. While the functions of these enzymes vary within and between organisms, it is evident that Pif1 family helicases are crucial for both nuclear and mitochondrial genome maintenance.
  •  
4.
  • McDonald, Karin R, et al. (författare)
  • The Pif1 family helicase Pfh1 facilitates telomere replication and has an RPA-dependent role during telomere lengthening
  • 2014
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7864 .- 1568-7856. ; 24, s. 80-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Pif1 family helicases are evolutionary conserved 5'-3' DNA helicases. Pfh1, the sole Schizosaccharomyces pombe Pif1 family DNA helicase, is essential for maintenance of both nuclear and mitochondrial DNAs. Here we show that its nuclear functions include roles in telomere replication and telomerase action. Pfh1 promoted semi-conservative replication through telomeric DNA, as replication forks moved more slowly through telomeres when Pfh1 levels were reduced. Unlike other organisms, S. pombe cells overexpressing Pfh1 displayed markedly longer telomeres. Because this lengthening occurred in the absence of homologous recombination but not in a replication protein A mutant (rad11-D223Y) that has defects in telomerase function, it is probably telomerase-mediated. The effects of Pfh1 on telomere replication and telomere length are likely direct as Pfh1 exhibited high telomere binding in cells expressing endogenous levels of Pfh1. These findings argue that Pfh1 is a positive regulator of telomere length and telomere replication.
  •  
5.
  • Sabouri, Nasim, et al. (författare)
  • DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase
  • 2012
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 26:6, s. 581-593
  • Tidskriftsartikel (refereegranskat)abstract
    • Replication forks encounter impediments as they move through the genome, including natural barriers due to stable protein complexes and highly transcribed genes. Unlike lesions generated by exogenous damage, natural barriers are encountered in every S phase. Like humans, Schizosaccharomyces pombe encodes a single Pif1 family DNA helicase, Pfh1. Here, we show that Pfh1 is required for efficient fork movement in the ribosomal DNA, the mating type locus, tRNA, 5S ribosomal RNA genes, and genes that are highly transcribed by RNA polymerase II. In addition, converged replication forks accumulated at all of these sites in the absence of Pfh1. The effects of Pfh1 on DNA replication are likely direct, as it had high binding to sites whose replication was impaired in its absence. Replication in the absence of Pfh1 resulted in DNA damage specifically at those sites that bound high levels of Pfh1 in wild-type cells and whose replication was slowed in its absence. Cells depleted of Pfh1 were inviable if they also lacked the human TIMELESS homolog Swi1, a replisome component that stabilizes stalled forks. Thus, Pfh1 promotes DNA replication and separation of converged replication forks and suppresses DNA damage at hard-to-replicate sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy