SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zappa Massimiliano) "

Sökning: WFRF:(Zappa Massimiliano)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jenicek, Michal, et al. (författare)
  • Importance of maximum snow accumulation for summer low flows in humid catchments
  • 2016
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 20:2, s. 859-874
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter snow accumulation obviously has an effect on the following catchment runoff. The question is, however, how long this effect lasts and how important it is compared to rainfall inputs. Here we investigate the relative importance of snow accumulation on one critical aspect of runoff, namely the summer low flow. This is especially relevant as the expected increase of air temperature might result in decreased snow storage. A decrease of snow will affect soil and ground-water storages during spring and might cause low streamflow values in the subsequent warm season. To understand these potential climate change impacts, a better evaluation of the effects of inter-annual variations in snow accumulation on summer low flow under current conditions is central. The objective in this study was (1) to quantify how long snowmelt affects runoff after melt-out and (2) to estimate the sensitivity of catchments with different elevation ranges to changes in snowpack. To find suitable predictors of summer low flow we used long time series from 14 Alpine and pre-Alpine catchments in Switzerland and computed different variables quantifying winter and spring snow conditions. In general, the results indicated that maximum winter snow water equivalent (SWE) influenced summer low flow, but could expectedly only partly explain the observed inter-annual variations. On average, a decrease of maximum SWE by 10% caused a decrease of minimum discharge in July by 6-9% in catchments higher than 2000 ma.s.l. This effect was smaller in middle-and lower-elevation catchments with a decrease of minimum discharge by 2-5% per 10% decrease of maxi-mum SWE. For higher-and middle-elevation catchments and years with below-average SWE maximum, the minimum discharge in July decreased to 70-90% of its normal level. Additionally, a reduction in SWE resulted in earlier low-flow occurrence in some cases. One other important factor was the precipitation between maximum SWE and summer low flow. When only dry preceding conditions in this period were considered, the importance of maximum SWE as a predictor of low flows increased. We assessed the sensitivity of individual catchments to the change of maximum SWE using the non-parametric Theil-Sen approach as well as an elasticity index. Both sensitivity indicators increased with increasing mean catchment elevation, indicating a higher sensitivity of summer low flow to snow accumulation in Alpine catchments compared to lower-elevation pre-Alpine catchments.
  •  
2.
  • Lehning, Michael, et al. (författare)
  • ALPINE3D : a detailed model of mountain surface processes and its application to snow hydrology
  • 2006
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 20:10, s. 2111-2128
  • Tidskriftsartikel (refereegranskat)abstract
    • Current models of snow cover distribution, soil moisture. surface runoff and river discharge typically have very simple parameterizations of surface processes, such as degree-day factors or single-layer snow cover representation. For the purpose of reproducing catchment runoff, simple snowmelt routines have proven to be accurate, provided that they are carefully calibrated specifically for the catchment they are applied to. The use of more detailed models is, however. useful to understand and quantify the role of individual surface processes for catchment hydrology, snow cover status and soil moisture distribution. We introduce ALPINE3D, a model for the high-resolution simulation of alpine surface processes. in particular snow processes. The model can be driven by measurements from automatic weather stations or by meteorological model outputs. As a preprocessing alternative, specific high-resolution meteorological fields can be created by running a meteorological model. The core three-dimensional ALPINE3D modules consist of a radiation balance model (which uses a view-factor approach and includes shortwave scattering and Ion-wave emission from terrain and tall vegetation) and a drifting snow model solving a diffusion equation for suspended snow and a saltation transport equation. The processes in the atmosphere are thus treated in three dimensions and are coupled to a distributed (in the hydrological sense of having a spatial representation of the catchment properties) one-dimensional model of vegetation, snow and soil (SNOWPACK) using the assumption that lateral exchange is small in these media. The model is completed by a conceptual runoff module. The model can be run with a choice of modules, thus generating more or less detailed surface forcing data as input for runoff generation simulations. The model modules can be run in a parallel (distributed) mode using a GRID infrastructure to allow computationally demanding tasks. In a case study from the Dischma Valley in eastern Switzerland, we demonstrate that the model is able to simulate snow distribution as seen from a NOAA advanced very high-resolution radiometer image. We then analyse the sensitivity of simulated snow cover distribution and catchment runoff to the use of different surface process descriptions. We compare model runoff simulations with runoff data from 10 consecutive years. The quantitative analysis shows that terrain influence on the radiation processes has a significant influence on catchment hydrology dynamics. Neglecting the role of vegetation and the spatial variability of the soil, on the other hand, had a much smaller influence on the runoff generation dynamics. We conclude that ALPINE3D is a valuable tool to investigate surface dynamics in mountains. It is currently used to investigate snow cover dynamics for avalanche warning and permafrost development and vegetation changes under climate change scenarios. It could also serve to test the output of simpler soil - vegetation - atmosphere transfer schemes used in larger scale climate or meteorological models and to create accurate soil moisture assessments for meteorological and flood forecasting.
  •  
3.
  • Orth, Rene, et al. (författare)
  • Does model performance improve with complexity? : A case study with three hydrological models
  • 2015
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 523, s. 147-159
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts). (C) 2015 The Authors. Published by Elsevier B.V.
  •  
4.
  • Zappa, Massimiliano, et al. (författare)
  • Propagation of uncertainty from observing systems and NWP into hydrological models : COST-731 Working Group 2
  • 2010
  • Ingår i: Atmospheric Science Letters. - : Wiley. - 1530-261X. ; 11:2, s. 83-91
  • Tidskriftsartikel (refereegranskat)abstract
    • The COST-731 action is focused on uncertainty propagation in hydrometeorological forecasting chains. Goals and activities of the action Working Group 2 are presented. Five foci for discussion and research have been identified: (1) understand uncertainties, (2) exploring, designing and comparing methodologies for the use of uncertainty in hydrological models, (3) providing feedback on sensitivity to data and forecast providers, (4) transferring methodologies among the different communities involved and (5) setting up test-beds and perform proof-of-concepts. Current examples of different perspectives on uncertainty propagation are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy