SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zaragoza Infante L) "

Sökning: WFRF:(Zaragoza Infante L)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galigalidou, C, et al. (författare)
  • Purpose-Built Immunoinformatics for BcR IG/TR Repertoire Data Analysis
  • 2022
  • Ingår i: Methods in molecular biology (Clifton, N.J.). - New York, NY : Springer US. - 1940-6029. ; 2453, s. 585-603
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of antigen receptor gene repertoires using next-generation sequencing (NGS) technologies has disclosed an unprecedented depth of complexity, requiring novel computational and analytical solutions. Several bioinformatics workflows have been developed to this end, including the T-cell receptor/immunoglobulin profiler (TRIP), a web application implemented in R shiny, specifically designed for the purposes of comprehensive repertoire analysis, which is the focus of this chapter. TRIP has the potential to perform robust immunoprofiling analysis through the extraction and processing of the IMGT/HighV-Quest output, via a series of functions, ensuring the analysis of high-quality, biologically relevant data through a multilevel process of data filtering. Subsequently, it provides in-depth analysis of antigen receptor gene rearrangements, including (a) clonality assessment; (b) extraction of variable (V), diversity (D), and joining (J) gene repertoires; (c) CDR3 characterization at both the nucleotide and amino acid level; and (d) somatic hypermutation analysis, in the case of immunoglobulin gene rearrangements. Relevant to mention, TRIP enables a high level of customization through the integration of various options in key aspects of the analysis, such as clonotype definition and computation, hence allowing for flexibility without compromising on accuracy.
  •  
2.
  • Galigalidou, C, et al. (författare)
  • Understanding Monoclonal B Cell Lymphocytosis: An Interplay of Genetic and Microenvironmental Factors
  • 2021
  • Ingår i: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 769612-
  • Tidskriftsartikel (refereegranskat)abstract
    • The term monoclonal B-cell lymphocytosis (MBL) describes the presence of a clonal B cell population with a count of less than 5 × 109/L and no symptoms or signs of disease. Based on the B cell count, MBL is further classified into 2 distinct subtypes: ‘low-count’ and ‘high-count’ MBL. High-count MBL shares a series of biological and clinical features with chronic lymphocytic leukemia (CLL), at least of the indolent type, and evolves to CLL requiring treatment at a rate of 1-2% per year, whereas ‘low-count’ MBL seems to be distinct, likely representing an immunological rather than a pre-malignant condition. That notwithstanding, both subtypes of MBL can carry ‘CLL-specific’ genomic aberrations such as cytogenetic abnormalities and gene mutations, yet to a much lesser extent compared to CLL. These findings suggest that such aberrations are mostly relevant for disease progression rather than disease onset, indirectly pointing to microenvironmental drive as a key contributor to the emergence of MBL. Understanding microenvironmental interactions is therefore anticipated to elucidate MBL ontogeny and, most importantly, the relationship between MBL and CLL.
  •  
3.
  •  
4.
  •  
5.
  • Sofou, E, et al. (författare)
  • Evidence of somatic hypermutation in the antigen binding sites of patients with CLL harboring IGHV genes with 100% germline identity
  • 2022
  • Ingår i: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 1079772-
  • Tidskriftsartikel (refereegranskat)abstract
    • Classification of patients with chronic lymphocytic leukemia (CLL) based on the somatic hypermutation (SHM) status of the clonotypic immunoglobulin heavy variable (IGHV) gene has established predictive and prognostic relevance. The SHM status is assessed based on the number of mutations within the IG heavy variable domain sequence, albeit only over the rearranged IGHV gene excluding the variable heavy complementarity determining region 3 (VH CDR3). This may lead to an underestimation of the actual impact of SHM, in fact overlooking the most critical region for antigen-antibody interactions, i.e. the VH CDR3. Here we investigated whether SHM may be present within the VH CDR3 of cases bearing ‘truly unmutated’ IGHV genes (i.e. 100% germline identity across VH FR1-VH FR3) employing Next Generation Sequencing. We studied 16 patients bearing a ‘truly unmutated’ CLL clone assigned to stereotyped subsets #1 (n=12) and #6 (n=4). We report the existence of SHM within the germline-encoded 3’IGHV, IGHD, 5’IGHJ regions of the VH CDR3 in both the main IGHV-IGHD-IGHJ gene clonotype and its variants. Recurrent somatic mutations were identified between different patients of the same subset, supporting the notion that they represent true mutational events rather than technical artefacts; moreover, they were located adjacent to/within AID hotspots, pointing to SHM as the underlying mechanism. In conclusion, we provide immunogenetic evidence for intra-VH CDR3 variations, attributed to SHM, in CLL patients carrying ‘truly unmutated’ IGHV genes. Although the clinical implications of this observation remain to be defined, our findings offer a new perspective into the immunobiology of CLL, alluding to the operation of VH CDR3-restricted SHM in U-CLL.
  •  
6.
  • Zaragoza-Infante, L, et al. (författare)
  • IgIDivA: immunoglobulin intraclonal diversification analysis
  • 2022
  • Ingår i: Briefings in bioinformatics. - : Oxford University Press (OUP). - 1477-4054 .- 1467-5463. ; 23:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Intraclonal diversification (ID) within the immunoglobulin (IG) genes expressed by B cell clones arises due to ongoing somatic hypermutation (SHM) in a context of continuous interactions with antigen(s). Defining the nature and order of appearance of SHMs in the IG genes can assist in improved understanding of the ID process, shedding light into the ontogeny and evolution of B cell clones in health and disease. Such endeavor is empowered thanks to the introduction of high-throughput sequencing in the study of IG gene repertoires. However, few existing tools allow the identification, quantification and characterization of SHMs related to ID, all of which have limitations in their analysis, highlighting the need for developing a purpose-built tool for the comprehensive analysis of the ID process. In this work, we present the immunoglobulin intraclonal diversification analysis (IgIDivA) tool, a novel methodology for the in-depth qualitative and quantitative analysis of the ID process from high-throughput sequencing data. IgIDivA identifies and characterizes SHMs that occur within the variable domain of the rearranged IG genes and studies in detail the connections between identified SHMs, establishing mutational pathways. Moreover, it combines established and new graph-based metrics for the objective determination of ID level, combined with statistical analysis for the comparison of ID level features for different groups of samples. Of importance, IgIDivA also provides detailed visualizations of ID through the generation of purpose-built graph networks. Beyond the method design, IgIDivA has been also implemented as an R Shiny web application. IgIDivA is freely available at https://bio.tools/igidiva
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy