SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zarrilli Raffaele) "

Sökning: WFRF:(Zarrilli Raffaele)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karah, Nabil, et al. (författare)
  • CRISPR-cas subtype I-Fb in Acinetobacter baumannii : evolution and utilization for strain subtyping
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustered regularly interspaced short palindromic repeats (CRISPR) are polymorphic elements found in the genome of some or all strains of particular bacterial species, providing them with a system of acquired immunity against invading bacteriophages and plasmids. Two CRISPR-Cas systems have been identified in Acinetobacter baumannii, an opportunistic pathogen with a remarkable capacity for clonal dissemination. In this study, we investigated the mode of evolution and diversity of spacers of the CRISPR-cas subtype I-Fb locus in a global collection of 76 isolates of A. baumannii obtained from 14 countries and 4 continents. The locus has basically evolved from a common ancestor following two main lineages and several pathways of vertical descent. However, this vertical passage has been interrupted by occasional events of horizontal transfer of the whole locus between distinct isolates. The isolates were assigned into 40 CRISPR-based sequence types (CST). CST1 and CST23-24 comprised 18 and 9 isolates, representing two main sub-clones of international clones CC1 and CC25, respectively. Epidemiological data showed that some of the CST1 isolates were acquired or imported from Iraq, where it has probably been endemic for more than one decade and occasionally been able to spread to USA, Canada, and Europe. CST23-24 has shown a remarkable ability to cause national outbreaks of infections in Sweden, Argentina, UAE, and USA. The three isolates of CST19 were independently imported from Thailand to Sweden and Norway, raising a concern about the prevalence of CST19 in Thailand. Our study highlights the dynamic nature of the CRISPR-cas subtype I-Fb locus in A. baumannii, and demonstrates the possibility of using a CRISPR-based approach for subtyping a significant part of the global population of A. baumannii.
  •  
2.
  • Karah, Nabil, et al. (författare)
  • The acinetobacter baumannii website (ab-web) : a multidisciplinary knowledge hub, communication platform, and workspace
  • 2023
  • Ingår i: FEMS Microbes. - : Oxford University Press. - 2633-6685. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Abweb is a species-centric knowledge hub, initially with 10 articles organized into two main sections, 'Overview' and 'Topics', and three themes, 'epidemiology', 'antibiotic resistance', and 'virulence'. The 'workspace' section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas.
  •  
3.
  • Sahl, Jason W., et al. (författare)
  • Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Acinetobacter baumannii is a globally distributed nosocomial pathogen that has gained interest due to its resistance to most currently used antimicrobials. Whole genome sequencing (WGS) and phylogenetics has begun to reveal the global genetic diversity of this pathogen. The evolution of A. baumannii has largely been defined by recombination, punctuated by the emergence and proliferation of defined clonal lineages. In this study we sequenced seven genomes from the sequence type (ST)25 lineage and compared them to 12 ST25 genomes deposited in public databases. A recombination analysis identified multiple genomic regions that are homoplasious in the ST25 phylogeny, indicating active or historical recombination. Genes associated with antimicrobial resistance were differentially distributed between ST25 genomes, which matched our laboratory-based antimicrobial susceptibility typing. Differences were also observed in biofilm formation between ST25 isolates, which were demonstrated to produce significantly more extensive biofilm than an isolate from the ST1 clonal lineage. These results demonstrate that within A. baumannii, even a fairly recently derived monophyletic lineage can still exhibit significant genotypic and phenotypic diversity. These results have implications for associating outbreaks with sequence typing as well as understanding mechanisms behind the global propagation of successful A. baumannii lineages.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy