SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zavarise Alberto) "

Sökning: WFRF:(Zavarise Alberto)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sridhar, Shruthi, et al. (författare)
  • Crystal structures and kinetic studies of a laboratory evolved aldehyde reductase explain the dramatic shift of its new substrate specificity
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10:4, s. 437-447
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fe2+-dependent E. coli enzyme FucO catalyzes the reversible interconversion of short-chain (S)-lactaldehyde and (S)-1,2-propane­diol, using NADH and NAD+ as cofactors, respectively. Laboratory-directed evolution experiments have been carried out previously using phenyl­acetaldehyde as the substrate for screening catalytic activity with bulky substrates, which are very poorly reduced by wild-type FucO. These experiments identified the N151G/L259V double mutant (dubbed DA1472) as the most active variant with this substrate via a two-step evolutionary pathway, in which each step consisted of one point mutation. Here the crystal structures of DA1472 and its parent D93 (L259V) are reported, showing that these amino acid substitutions provide more space in the active site, though they do not cause changes in the main-chain conformation. The catalytic activity of DA1472 with the physiological substrate (S)-lactaldehyde and a series of substituted phenyl­acetaldehyde derivatives were systematically quantified and compared with that of wild-type as well as with the corresponding point-mutation variants (N151G and L259V). There is a 9000-fold increase in activity, when expressed as kcat/KM values, for DA1472 compared with wild-type FucO for the phenyl­acetaldehyde substrate. The crystal structure of DA1472 complexed with a non-reactive analog of this substrate (3,4-di­meth­oxy­phenyl­acetamide) suggests the mode of binding of the bulky group of the new substrate. These combined structure–function studies therefore explain the dramatic increase in catalytic activity of the DA1472 variant for bulky aldehyde substrates. The structure comparisons also suggest why the active site in which Fe2+ is replaced by Zn2+ is not able to support catalysis.
  •  
2.
  • Zavarise, Alberto, et al. (författare)
  • Structures of lactaldehyde reductase, FucO, link enzyme activity to hydrogen bond networks and conformational dynamics
  • 2023
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 290:2, s. 465-481
  • Tidskriftsartikel (refereegranskat)abstract
    • A group-III iron containing 1,2-propanediol oxidoreductase, FucO, (also known as lactaldehyde reductase) from Escherichia coli was examined regarding its structure–dynamics–function relationships in the catalysis of the NADH-dependent reduction of (2S)-lactaldehyde. Crystal structures of FucO variants in the presence or absence of cofactors have been determined, illustrating large domain movements between the apo and holo enzyme structures. Different structures of FucO variants co-crystallized with NAD+ or NADH together with substrate further suggest dynamic properties of the nicotinamide moiety of the coenzyme that are important for the reaction mechanism. Modelling of the native substrate (2S)-lactaldehyde into the active site can explain the stereoselectivity exhibited by the enzyme, with a critical hydrogen bond interaction between the (2S)-hydroxyl and the side-chain of N151, as well as the previously experimentally demonstrated pro-(R) selectivity in hydride transfer from NADH to the aldehydic carbon. Furthermore, the deuterium kinetic isotope effect of hydride transfer suggests that reduction chemistry is the main rate-limiting step for turnover which is not the case in FucO catalysed alcohol oxidation. We further propose that a water molecule in the active site – hydrogen bonded to a conserved histidine (H267) and the 2′-hydroxyl of the coenzyme ribose – functions as a catalytic proton donor in the protonation of the product alcohol. A hydrogen bond network of water molecules and the side-chains of amino acid residues D360 and H267 links bulk solvent to this proposed catalytic water molecule.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy