SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zaveri Rahul A.) "

Sökning: WFRF:(Zaveri Rahul A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • D'Ambro, Emma L., et al. (författare)
  • Isothermal Evaporation of alpha-Pinene Ozonolysis SOA : Volatility, Phase State, and Oligomeric Composition
  • 2018
  • Ingår i: ACS Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 2:10, s. 1058-1067
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of the isothermal evaporation of alpha-pinee ozonolysis secondary organic aerosol (SOA). Using a novel, filter-based method, we reproduce literature observations of the time-dependent evaporation of SOA particles. We apply two detailed physical models to interpret the evaporative behavior of both the bulk SOA and individual components. Both models find that a combination of effectively nonvolatile products, together with reversibly formed oligomers (or otherwise reactive monomers) having a decomposition lifetime of 9 to 28 h, best explains the evolution of composition and volatility as particles age in the absence of both organic vapors and oxidants, even under an assumption of relatively viscous (soft wax-like with a minimum diffusion coefficient of 1 x 10(-5) cm(2) s(-1)) particles. We find that the residence time in the SOA formation chamber and time spent undergoing isothermal evaporation, both indicative of the physical age of the aerosol, are the most important experimental parameters determining the evaporation rate. The evolution of volatility observed in these experiments is compared to field measurements in a boreal forest site. The ambient monoterpene-dominated SOA volatility is only reproduced in the laboratory after 24 h of extended aging in a dilute, dark, oxidant-free environment.
  •  
2.
  • Shrivastava, Manish, et al. (författare)
  • Recent advances in understanding secondary organic aerosol : Implications for global climate forcing
  • 2017
  • Ingår i: Reviews of Geophysics. - 8755-1209. ; 55:2, s. 509-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy