SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeindlinger Georg) "

Sökning: WFRF:(Zeindlinger Georg)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schriefl, Andreas J., et al. (författare)
  • Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries
  • 2012
  • Ingår i: Journal of the Royal Society Interface. - : The Royal Society. - 1742-5689 .- 1742-5662. ; 9:71, s. 1275-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • The established method of polarized microscopy in combination with a universal stage is used to determine the layer-specific distributed collagen fibre orientations in 11 human non-atherosclerotic thoracic and abdominal aortas and common iliac arteries (63 +/- 15.3 years, mean +/- s.d.). A dispersion model is used to quantify over 37 000 recorded fibre angles from tissue samples. The study resulted in distinct fibre families, fibre directions, dispersion and thickness data for each layer and all vessels investigated. Two fibre families were present for the intima, media and adventitia in the aortas, with often a third and sometimes a fourth family in the intima in the respective axial and circumferential directions. In all aortas, the two families were almost symmetrically arranged with respect to the cylinder axis, closer to the axial direction in the adventitia, closer to the circumferential direction in the media and in between in the intima. The same trend was found for the intima and adventitia of the common iliac arteries; however, there was only one preferred fibre alignment present in the media. In all locations and layers, the observed fibre orientations were always in the tangential plane of the walls, with no radial components and very small dispersion through the wall thickness. A wider range of in-plane fibre orientations was present in the intima than in the media and adventitia. The mean total wall thickness for the aortas and the common iliac artery was 1.39 and 1.05 mm, respectively. For the aortas, a slight thickening of the intima and a thinning of the media in increasingly distal regions were observed. A clear intimal thickening was present distal to the branching of the celiac arteries. All data, except for the media of the common iliac arteries, showed two prominent collagen fibre families for all layers so that two-fibre family models seem most appropriate.
  •  
2.
  • Sommer, Gerhard, et al. (författare)
  • Multiaxial mechanical response and constitutive modeling of esophageal tissues : Impact on esophageal tissue engineering
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 9:12, s. 9379-9391
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy