SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeissig S) "

Sökning: WFRF:(Zeissig S)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Zheng, TH, et al. (författare)
  • Genome-wide analysis of 944 133 individuals provides insights into the etiology of haemorrhoidal disease
  • 2021
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 70:8, s. 1538-1549
  • Tidskriftsartikel (refereegranskat)abstract
    • Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date.DesignWe conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry.ResultsWe demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix.ConclusionHEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.
  •  
4.
  • Juzenas, S., et al. (författare)
  • Sequencing-based hematopoietic miRNA landscape reveals common and distinct features of autoimmune inflammatory phenotypes
  • 2019
  • Ingår i: Journal of Crohn's & Colitis. - : Oxford University Press. - 1873-9946 .- 1876-4479. ; 13:Suppl. 1, s. S614-S614
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: MiRNAs represent a class of small non-coding RNAs which are involved in regulation of protein-coding gene expression. Being implicated in various processes such as development and regu-latory circuits of cells, miRNAs also play an important role in the etiology of a variety of diseases. Imbalance of the regulatory pro-cesses within immune system development and response may lead to disturbed production of pro-inflammatory cytokines and over-reactivity of the immune cells, thus causing relapsing inflamma-tion, a characteristic feature of inflammatory bowel disease (IBD). Recent studies of colonic miRNAs employed NGS for the distinction between CD, UC and healthy controls, or among different CD sub-types. However, NGS-based profiles of blood-circulating miRNAs have thus far not been investigated in the context of IBD together with other immune-mediated diseases, including ankylosing spon-dylitis, psoriasis, systemic lupus erythematosus, rheumatoid arthritis and sarcoidosis, as well as non-immune hemolytic-uremic syndrome.Methods: Study participants were recruited in Germany and Sweden, where peripheral blood samples (PAXgene) as well as phenotypical and clinical information (such as treatment status, dis-ease activity and location) was collected. Small RNA transcriptomes of 680 individuals (Figure 1) were sequenced using Illumina NGS platform. Small RNA-seq data preprocessing and quantification were performed using cutadapt and miraligner (ref. miRBase v22), respectively. Differential expression analysis (DESeq2) and correla-tion (Spearman) analysis have been performed to identify disease activity-, trait- and treatment-specific miRNA signatures. These sig-natures were then utilized in a machine-learning approach to build classification models for IBD diagnostics.Results: The results of multiple pairwise differential expression anal-yses among different immune-mediated inflammatory conditions and healthy controls revealed inflammation-specific as well and dis-ease-specific deregulation of miRNAs. Correlation analysis identified miRNAs positively and negatively correlated with IBD activity. The preliminary results of machine learning classifiers based on miRNA profiles showed that median Matthews correlation coefficient for all model types showed remarkable predictive performance estimated as being 1.00 (median over main diagnoses), as well as ranging from 0.68 to 0.76 (median over CD location) and from 0.69 to 0.77 (median over UC extent).Conclusions: Immune-mediated inflammatory diseases share com-mon and distinct differentially expressed miRNAs, which have a potential to be used in the diagnostics of IBD, including the evalua-tion of the disease activity.
  •  
5.
  • Cleynen, Isabelle, et al. (författare)
  • Inherited determinants of Crohn's disease and ulcerative colitis phenotypes : a genetic association study
  • 2016
  • Ingår i: The Lancet. - New York, USA : Elsevier. - 0140-6736 .- 1474-547X. ; 387:10014, s. 156-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases.Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile.Findings: After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10(-78)), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10(-18)). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohn's disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10(-4)).Interpretation: Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohn's disease, colonic Crohn's disease, and ulcerative colitis) than by Crohn's disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patient's disease, in part genetically determined, and the major driver to changes in disease behaviour over time.Funding: International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).
  •  
6.
  • Heap, Graham A., et al. (författare)
  • HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:10, s. 1131-1134
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatitis occurs in approximately 4% of patients treated with the thiopurines azathioprine or mercaptopurine. Its development is unpredictable and almost always leads to drug withdrawal. We identified patients with inflammatory bowel disease (IBD) who had developed pancreatitis within 3 months of starting these drugs from 168 sites around the world. After detailed case adjudication, we performed a genome-wide association study on 172 cases and 2,035 controls with IBD. We identified strong evidence of association within the class II HLA region, with the most significant association identified at rs2647087 (odds ratio 2.59, 95% confidence interval 2.07-3.26, P = 2 x 10(-16)). We replicated these findings in an independent set of 78 cases and 472 controls with IBD matched for drug exposure. Fine mapping of the H LA region identified association with the HLA-DQA1*02:01-HLA-DRB1*07:01 haplotype. Patients heterozygous at rs2647087 have a 9% risk of developing pancreatitis after administration of a thiopurine, whereas homozygotes have a 17% risk.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy