SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeldin D. C.) "

Sökning: WFRF:(Zeldin D. C.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shao, Z., et al. (författare)
  • Cytochrome P450 2C8 omega 3-Long-Chain Polyunsaturated Fatty Acid Metabolites Increase Mouse Retinal Pathologic Neovascularization-Brief Report
  • 2014
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 34:3, s. 581-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary 3-long-chain polyunsaturated fatty acids (3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. Approach and Results The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a 3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8-overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both 3LCPUFA and 6LCPUFA and antiangiogenic role of sEH in 3LCPUFA metabolism were corroborated in aortic ring assays. Conclusions Our results suggest that CYP2C 3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.
  •  
2.
  • Gong, Y., et al. (författare)
  • Cytochrome P450 Oxidase 2C Inhibition Adds to-3 Long-Chain Polyunsaturated Fatty Acids Protection Against Retinal and Choroidal Neovascularization
  • 2016
  • Ingår i: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 36:9, s. 1919-1927
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Pathological ocular neovascularization is a major cause of blindness. Increased dietary intake of -3 long-chain polyunsaturated fatty acids (LCPUFA) reduces retinal neovascularization and choroidal neovascularization (CNV), but -3 LCPUFA metabolites of a major metabolizing pathway, cytochrome P450 oxidase (CYP) 2C, promote ocular pathological angiogenesis. We hypothesized that inhibition of CYP2C activity will add to the protective effects of -3 LCPUFA on neovascular eye diseases. Approach and Results The mouse models of oxygen-induced retinopathy and laser-induced CNV were used to investigate pathological angiogenesis in the retina and choroid, respectively. The plasma levels of -3 LCPUFA metabolites of CYP2C were determined by mass spectroscopy. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of CYP2C inhibition and -3 LCPUFA-derived CYP2C metabolic products on angiogenesis ex vivo. We found that inhibition of CYP2C activity by montelukast added to the protective effects of -3 LCPUFA on retinal neovascularization and CNV by 30% and 20%, respectively. In CYP2C8-overexpressing mice fed a -3 LCPUFA diet, montelukast suppressed retinal neovascularization and CNV by 36% and 39% and reduced the plasma levels of CYP2C8 products. Soluble epoxide hydrolase inhibition, which blocks breakdown and inactivation of CYP2C -3 LCPUFA-derived active metabolites, increased oxygen-induced retinopathy and CNV in vivo. Exposure to selected -3 LCPUFA metabolites of CYP2C significantly reversed the suppression of both angiogenesis ex vivo and endothelial cell functions in vitro by the CYP2C inhibitor montelukast. Conclusions Inhibition of CYP2C activity adds to the protective effects of -3 LCPUFA on pathological retinal neovascularization and CNV.
  •  
3.
  • Gong, Y., et al. (författare)
  • Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis
  • 2016
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 13, s. 201-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)alpha agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP) 2C with higher affinity than to PPAR alpha. CYP2C metabolizes omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). While omega-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both omega-3 and omega-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C omega-3 LCPUFA (and omega-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPAR alpha-/-mice and augmented omega-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic.-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPAR alpha. Fenofibrate augmented the overall protective effects of omega-3 LCPUFAs on neovascular eye diseases. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://reativecommons.org/licenses/by-nc-nd/4.0/).
  •  
4.
  • Gong, Y., et al. (författare)
  • Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice
  • 2022
  • Ingår i: Metabolism: Clinical and Experimental. - : Elsevier BV. - 0026-0495. ; 134
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω−3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω−3 (and ω−6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω−6 LCPUFA and anti-angiogenic ones from ω−3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω−6 and ω−3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω−3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. Objectives: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. Methods: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. Results: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω−6 and ω−3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω−6, ω−3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω−3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. Conclusions: CYP2J2 inhibition augmented the inhibitory effect of ω−3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD. © 2022 Elsevier Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy