SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeng Lunjie 1983) "

Sökning: WFRF:(Zeng Lunjie 1983)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shetty, Naveen, 1988, et al. (författare)
  • Scalable Fabrication of Edge Contacts to 2D Materials : Implications for Quantum Resistance Metrology and 2D Electronics
  • 2023
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society. - 2574-0970. ; 6:7, s. 6292-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a reliable and scalable fabrication method for producing electrical contacts to two-dimensional (2D) materials based on the tri-layer resist system. We demonstrate the applicability of this method in devices fabricated on epitaxial graphene on silicon carbide (epigraphene) used as a scalable 2D material platform. For epigraphene, data on nearly 70 contacts result in median values of the one-dimensional (1D) specific contact resistances ρc ∼ 67 Ω·μm and follow the Landauer quantum limit ρc ∼ n-1/2, consistently reaching values ρc < 50 Ω·μm at high carrier densityn. As a proof of concept, we apply the same fabrication method to the transition metal dichalcogenide (TMDC) molybdenum disulfide (MoS2). Our edge contacts enable MoS2 field-effect transistor (FET) behavior with an ON/OFF ratio of >106 at room temperature (>109 at cryogenic temperatures). The fabrication route demonstrated here allows for contact metallization using thermal evaporation and also by sputtering, giving an additional flexibility when designing electrical interfaces, which is key in practical devices and when exploring the electrical properties of emerging materials. © 2023 The Authors. 
  •  
2.
  • Asgari, H., et al. (författare)
  • Effect of grain size on high strain rate deformation of rolled Mg-4Y-3RE alloy in compression
  • 2015
  • Ingår i: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 633, s. 92-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium alloys are widely used in automotive and aerospace industries, where they can be exposed to high strain rate conditions such as car crash and ballistic impact. Grain size is an important factor that can affect the mechanical behavior of magnesium alloys at high strain rates. Therefore, it is very important to evaluate the effects of grain size on the dynamic mechanical response of magnesium alloys under shock-loading conditions. In this research, texture evolution, microstructural changes and dynamic mechanical behavior of rolled Mg-4Y-3RE alloy samples, with grain sizes of 8, 25 and 46 mu m, deformed under compressive shock-loading are investigated. Dynamic shock loading tests were conducted using Split Hopkinson Pressure Bar at room temperature at a strain rate of 1200 s(-1). Texture measurements indicate development of a double-peak (00.2) basal texture in all the samples during shock loading. However, slightly higher intensities were observed for coarse-grained samples. Both strength and ductility were found to decrease with increasing grain size, while twining fraction and strain hardening rate increase with increasing grain size. The activity of double and contraction twins increased with increase in grain size. Furthermore, activation of pyramidal (c + a) slip system during the shock loading of the Mg-4Y-3RE alloy was confirmed using the 'g.b' analysis method.
  •  
3.
  • Asgari, H., et al. (författare)
  • Effect of yttrium on the twinning and plastic deformation of AE magnesium alloy under ballistic impact
  • 2015
  • Ingår i: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 623, s. 10-21
  • Tidskriftsartikel (refereegranskat)abstract
    • In this research, effect of yttrium on the texture formation, microstructural evolution and mechanical response of AE42 and AE44 cast magnesium alloys were investigated under ballistic impact. The selected strain rates were 800 and 1100 s(-1) and the tests were conducted using Split Hopkinson Pressure Bar. It was inferred that after high velocity impact, a weaker basal texture developed in the samples with lower content of yttrium. Experimental results also showed that by increasing the concentration of yttrium in the cast AE alloys, strength, ductility and dislocation density of the impacted alloys increased but, the fraction of twinning decreased, which indicate the effective influence of yttrium on the nucleation and growth of twins. Moreover, it was inferred that accumulation of dislocations at intersections of the twins led to the cracking and fracture of the samples under shock loading conditions.
  •  
4.
  • Asgari, H., et al. (författare)
  • Experimental and simulation analysis of texture formation and deformation mechanism of rolled AZ31B magnesium alloy under dynamic loading
  • 2014
  • Ingår i: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 618, s. 310-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium alloys components are potentially used under shock loading conditions. Considering the fact that deformation behavior is completely different under high strain rate conditions compared to quasi-static conditions, it is very important to evaluate the dynamic mechanical response and deformation mechanisms of magnesium alloys under impact loading. In this research, texture formation, microstructural changes and dynamic deformation behavior of rolled AZ31B in the tempered H24 stress-relieved conditions, shock-loaded under compressive dynamic loading, were investigated. Texture measurements showed that the as-received AZ31B alloy had a strong (00.2) basal texture. Four groups of cylindrical samples were cut in the rolling direction (RD), in 45 degrees to the RD, in the transverse direction (TD) and in the direction perpendicular to the RD-TD plane. Dynamic shock loading of the test samples were conducted using Split Hopkinson Pressure Bar at room temperature at strain rates ranging from 600 to 1100 s(-1), while loading direction was parallel to the longitudinal axis of the cylindrical samples. After high strain rate deformation, although the loading direction was different, a strong (00.2) basal texture was observed in all samples. It was inferred that increasing the strain rate led to an increase in strength and ductility, but to a decrease in twinning fraction, indicating the possible activation of non-basal slip systems. Besides, a high degree of mechanical anisotropy was found for all strain rates used such that the lowest strength was registered for the samples cut along the direction parallel to the rolling direction. A viscoplastic self-consistent model with a tangent approach was used to corroborate the experimental textures and possible deformation mechanisms by simulation.
  •  
5.
  • Asgari, H., et al. (författare)
  • Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading
  • 2015
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803. ; 106, s. 359-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6,18 and 37 pm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s(-1) It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found to decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading.
  •  
6.
  • Bender, P., et al. (författare)
  • Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpin™R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpin™XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105 rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments.
  •  
7.
  • Bender, P., et al. (författare)
  • Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers
  • 2018
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:5, s. 3068-3077
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and possibly connected to the disordered spins within the individual nanoflowers.
  •  
8.
  • Bender, P., et al. (författare)
  • Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multicore particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions.
  •  
9.
  • Benedet, Mattia, et al. (författare)
  • Efficient photoactivated hydrogen evolution promoted by Cu x O-gCN-TiO 2 -Au (x = 1,2) nanoarchitectures
  • 2024
  • Ingår i: RSC Advances. - 2046-2069. ; 14:10, s. 7221-7228
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we propose an original and potentially scalable synthetic route for the fabrication of CuxO-gCN-TiO2-Au (x = 1,2) nanoarchitectures, based on Cu foam anodization, graphitic carbon nitride liquid-phase deposition, and TiO2/Au sputtering. A thorough chemico-physical characterization by complementary analytical tools revealed the formation of nanoarchitectures featuring an intimate contact between the system components and a high dispersion of gold nanoparticles. Modulation of single component interplay yielded excellent functional performances in photoactivated hydrogen evolution, corresponding to a photocurrent of ≈−5.7 mA cm−2 at 0.0 V vs. the reversible hydrogen electrode (RHE). These features, along with the very good service life, represent a cornerstone for the conversion of natural resources, as water and largely available sunlight, into added-value solar fuels.
  •  
10.
  • Chen, Yan, et al. (författare)
  • Gate-tunable superconductivity in hybrid InSb-Pb nanowires
  • 2023
  • Ingår i: Applied Physics Letters. - 0003-6951 .- 1077-3118. ; 123:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a report on hybrid InSb-Pb nanowires that combine high spin-orbit coupling with a high critical field and a large superconducting gap. Material characterization indicates the Pb layer of high crystal quality on the nanowire side facets. Hard induced superconducting gaps and gate-tunable supercurrent are observed in the hybrid nanowires. These results showcase the promising potential of this material combination for a diverse range of applications in hybrid quantum transport devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy