SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zenkert Dan Professor) "

Sökning: WFRF:(Zenkert Dan Professor)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yucel, Yasemin Duygu (författare)
  • LiFePO4-coated carbon fiber electrodes for structural batteries
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium-ion batteries (LIBs) have a central role in products, from portable devices to large-scale energy storage for the electric grid and continue to undergo rapid development. The surge in electric vehicles has intensified the focus on technological advancements and new-generation technologies. Structural batteries have received considerable attention for their multifunctionality and lightweight properties. These batteries utilize carbon fibers to combine their mechanical strength with battery functionalities in a single structure, consequently reducing overall weight and increasing energy density. Similar to traditional LIBs, structural batteries comprise negative and positive electrodes, reinforced within a structural battery electrolyte (SBE). While extensive research has been conducted on carbon fibers as negative electrodes, there has been a relative scarcity in the development of positive electrodes that align with the structural battery concept.            This thesis explores coating methodologies on polyacrylonitrile (PAN)-based carbon fibers (CF) with positive electrode active material, specifically focusing on the utilization of lithium iron phosphate (LFP). Electron microscopy and electrochemical tests were conducted to evaluate the relation between structure with long-term and rate performances of these electrodes in half-cells.             Spray coating and siphon impregnation (later referred to as ‘powder impregnation’ in this thesis) techniques were employed to coat the carbon fibers, which serve as current collectors instead of conventional aluminum foil. The spray coating method utilized a standard electrode slurry based on an organic solvent, with efforts made to optimize parameters such as the height of the spray gun and plate temperature. The sprayed coating was quite thin, resulting in excellent rate capability. In the powder impregnation method, a water-based slurry was utilized with polyethylene glycol (PEG) as a binder. Efforts were made to obtain good fiber distribution within a homogeneous matrix of coating in the electrode. The parameters, including slurry viscosity, binder effect, electrode design, cell design, electrode preparation, and drying temperatures, were regulated for the best electrochemical performance and cell life. It was found that a binder is necessary for ensuring robust electrodes. Elevated drying temperatures are essential to eliminate moisture from the water-based process and components. Additionally, conductive carbon additives such as carbon black and graphene were incorporated, and their impact was assessed. A small amount of carbon additive (< 1 wt.%) improved performance at higher cycling rates.             The electrodes produced via powder impregnation were finally integrated into double-sided full cells versus uncoated PAN-derived CFs serving as negative electrodes in commercial liquid electrolyte or SBE, respectively. The LFP-coated CF electrodes exhibited good performance in full cells, indicating promising performance for the structural battery. The main limitation was observed in the power losses in the CF negative electrodes and in the ionic conductivity of the SBE. Overall, the thesis shows that the encapsulation of individual PAN-derived carbon fiber filaments using the applied coating methodologies was successful and that the use of carbon fibers as current collectors proved to be effective.
  •  
2.
  • Cameron, Christopher John, 1980- (författare)
  • Design of Multifunctional Body Panels for Conflicting Structural and Acoustic Requirements in Automotive Applications
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Over the past century, the automobile has become an integral part of society, with vastincreases in safety, refinement, and complexity, but most unfortunately in mass. Thetrend of increasing mass cannot be maintained in the face of increasingly stringentregulations on fuel consumption and emissions.The body of work within this thesis exists to help the vehicle industry to take a stepforward in producing vehicles for the future in a sustainable manner in terms of botheconomic and ecological costs. In particular, the fundamentally conflicting requirementsof low weight and high stiffness in a structure which should have good acousticperformance is addressed.An iterative five step design method based on the concepts of multifunctionality andmultidisciplinary engineering is proposed to address the problem, and explained witha case study.In the first step of the process, the necessary functional requirements of the systemare evaluated. Focus is placed on the overall system behavior and diverted from subproblems.For the case study presented, the functional requirements included: structuralstiffness for various loading scenarios, mass efficiency, acoustic absorption, vibrationaldamping, protecting from the elements, durability of the external surfaces,and elements of styling.In the second step of the process, the performance requirements of the system wereestablished. This involved a thorough literature survey to establish the state of theart, a rigorous testing program, and an assessment of numerical models and tools toevaluate the performance metrics.In the third step of the process, a concept to fulfil requirements is proposed. Here, amulti-layered, multi-functional panel using composite materials, and polymer foamswith varying structural and acoustic properties was proposed.In the fourth step of the process, a method of refinement of the concept is proposed.Numerical tools and parameterized models were used to optimize the three dimensionaltopology of the panel,material properties, and dimensions of the layers in a stepwisemanner to simultaneously address the structural and acoustic performance.In the fifth and final step of the process, the final result and effectiveness of the methodused to achieve it is examined. Both the tools used and the final result in itself shouldbe examined. In the case study the process is repeated several times with increasingdegrees of complexity and success in achieving the overall design objectives.In addition to the design method, the concept of a multifunctional body panel is definedand developed and a considerable body of knowledge and understanding is presented.Variations in core topology, materials used, stacking sequence of layers, effects ofperforations, and air gaps within the structure are examined and their effects on performanceare explored and discussed. The concept shows promise in reducing vehicleweight while maintaining the structural and acoustic performance necessary in the contextof sustainable vehicle development.
  •  
3.
  • Jacques, Eric, 1985- (författare)
  • Lithium-intercalated Carbon Fibres : Towards the Realisation of Multifunctional Composite Energy Storage Materials
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lightweight design is a major improvement path for sustainable transport asit contributes to lower vehicles energy consumption and gas emissions. Anovel solution to weight savings is to store energy directly in the mechanicalstructure of the vehicle with a multifunctional material, called structural battery,which could simultaneously bear mechanical loads and store electricalenergy. This is especially possible because the carbon fibre is a high performancemechanical reinforcement for polymer composites and can also be usedas a lithium-intercalating electrode in lithium-ion batteries. In this thesis, theperformance of carbon fibres for use as a lithium-intercalating structural electrodeis investigated.Electrochemical characterisation has shown that intermediate modulus polyacrylonitrile- based carbon fibres which have the highest strength also offerthe most promising electrochemical capacities when compared to other fibregrades with different microstructures. The measured capacity of fibre bundleswas highly dependent on the current rate and at low rate the capacitiesclose to that of graphite electrodes were measured. In a mechanical characterisationthe carbon fibre was not affected by the number of electrochemicalcycles, up to 1000 cycles, but rather by the amount of intercalated lithium.The tensile stiffness appeared to remain unchanged, but during lithation thetensile strength dropped and partly recovered during delithiation due to afirst-cycle irreversible drop. A longitudinal expansion of the carbon fibre wasalso measured during lithiation. An irreversible expansion in the delithiatedfibres highlighted that the first cycle-capacity loss is partly due to intercalatedlithium which is trapped in the carbon fibre. From these results, the carbonfibre is without doubts suitable for structural battery applications.A mechanical-electrochemical coupling in lithium-intercalated carbon fibreswas also measured, highlighting a piezo-electrochemical transducer effect resultingin new functionalities for lithium-intercalated carbon fibres. The longitudinalexpansion strain can be used for mechanical actuation. A responseof the cell open-circuit potential to an applied mechanical strain can be usedfor strain sensing.
  •  
4.
  • Peuvot, Kevin, 1992- (författare)
  • Lignin- and PAN-based carbon fibres as negative electrodes for alkali-ion batteries
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of sodium-ion batteries (SIBs) and potassium-ion batteries (KIBs) have accelerated since they can now reach similar gravimetric energy densities as lithium-ion batteries (LIBs) but with a lower environmental impact. Hard carbon is the most common negative electrode for SIBs and KIBs and can be made from renewable resources such as lignin. Lignin can be then manufactured into fibres which can then be used as free-standing electrodes to push even further the sustainability by reducing the amount of current collector and additives needed in the battery. The concept of structural batteries is defined as a system that can simultaneously carry mechanical load as well as store the electrical energy in form of a battery to decrease the total weight. Polyacrylonitrile-based (PAN-based) carbon fibres are some of the most adapted materials thanks to their outstanding mechanical properties as well as their ability to be used as negative electrode for LIBs. However, a structural model and insertion model for alkali-ion insertion in the PAN-based carbon fibres is still lacking and is necessary to be able to understand the dynamics and fundamentals. This thesis focuses on the use of lignin-based carbon fibres (LCFs) and PAN-based carbon fibres as negative electrodes. The potential of using LCFs as negative electrode for SIBs and KIBs is evaluated by using a combination of electrochemical techniques and material characterization methods. The LCFs have high specific capacity and high initial coulombic efficiency when used as negative electrode for SIBs. The diffusion of potassium-ions into the LCFs is investigated by implementing a numerical model. The investigation on the open circuit voltage curves and the entropy change for potassium-ion insertion suggests that the LCFs structure contains two domains which can explain why the numerical model cannot fully fit the experimental data. The PAN-based carbon fibres are investigated as negative electrode for LIBs and SIBs. For SIBs, the axial expansion is investigated during charge/discharge and shows a staged expansion between the slope region and the plateau region of the charge/discharge profile. For LIBs, a combination of ex-situ Li-NMR and ex-situ wide-angle X-ray scattering isused to determine the insertion mechanism and structure of the PAN-based carbon fibres. A structural model and insertion model for lithium-ions is suggested from our experimental results consisting of three different types of sites: disordered domain in the carbon structure, ordereddomain in the carbon structure, and pore filling.
  •  
5.
  • Schneider, Christof (författare)
  • Recyclable self-reinforced ductile fiber composite materials for structural applications
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lightweight structures in vehicles are a proven way to reduce fuel consumption and the environmental impact during the use. Lower structural weight can be achieved by using high performance materials such as composites or using the material efficiently as a sandwich structure. Traditional composite materials such as carbon or glass fiber reinforced polymers have high weight specific mechanical properties but are inherently brittle and expensive. They consist of at least two different materials making recycling a difficult endeavor.The best composite material would have good weight specific properties and is ductile, cheap and comprises of a reinforcement and matrix material based on the same recyclable material making recycling easy. In self-reinforced polymer (SrP) composite materials, reinforcing fibers and matrix material are based on the same recyclable thermoplastic polymer making recycling to a straightforward process. SrP composite materials are ductile, inexpensive and have a high energy absorption potential. The aim of this thesis is to investigate the potential of SrP composites in structural applications. Firstly, the quasi-static and dynamic tensile and compression properties of a self-reinforced poly(ethylene terephthalate) (SrPET) composite material are investigated confirming the high energy absorption potential. Sandwich structures out of only SrPET with a lattice core are manufactured and tested in quasi-static out-of-plane compression showing the potential of SrPET as core material. Corrugated sandwich structured out of only SrPET are manufactured and tested in out-of-plane compression over a strain rate range10−4 s−1 - 103 s−1. The corrugated SrPET core has similar quasi-static properties as commercial polymeric foams but superior dynamic compression properties. Corrugated sandwich beams out of only SrPET are manufactured and tested in quasi-static three-point bending confirming the high energy absorption potential of SrPET structures. When comparing the SrPET beams to aluminum beams with identical geometry and weight, the SrPET beams shows higher energy absorption and peak load. The experimental results show excellent agreement with finite element predictions. The impact behaviorof corrugated SrPET sandwich beams during three-point bending is investigated. When comparing SrPET sandwich beams to sandwich beams with carbon fiber face sheets and high performance thermoset polymeric foam with the same areal weight, for the same impact impulse per area, the SrPET shows less mid-span deflection.
  •  
6.
  • Cameron, Christopher John, 1980- (författare)
  • Design of Multifunctional Body Panels in Automotive Applications : Reducing the Ecological and Economical footprint of the vehicle industry
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Over the past century, the automobile has become an integral part of modern industrializedsociety. Consumer demands, regulatory legislation, and the corporate need togenerate a profit, have been the most influential factors in driving forward the evolutionof the automobile. As the comfort, safety, and reliability of the automobile haveincreased, so has its complexity, and most definitely its mass.The work within this thesis addresses the twofold problem of economy and ecologywith respect to sustainable development of automobiles. Specifically, the conflictingproblems of reducing weight, and maintaining or improving noise, vibration, andharshness behaviour are addressed. Potential solutions to these problems must also beexecutable at the same, or preferably lower production costs. The hypothesis is that byreplacing acoustic treatments, aesthetic details, and complex systems of structural componentsboth on the interior and exterior of the vehicle with a single multi-functionalbody panel, functionality can be retained at a reduced mass (i.e. reduced consumptionof raw materials) and reduced fiscal cost.A case study is performed focusing on the roof structure of a production vehicle. Fullvehicle and component level acoustic testing is performed to acquire acoustic functionalrequirements. Vibro-mechanical testing at the component level is performedto acquire structural functional requirements complimentary to those in the vehiclesdesign specifications. Finite element modelling and analysis is employed to createa model representative of the as-tested component and evaluate its acoustic and mechanicalbehaviour numerically. Results of numerical simulations are compared withthe measured results for both acoustic and mechanical response in order to verify themodel and firmly establish a set of acoustic and mechanical constraints for future work.A new, multi-layered, multi-functional sandwich panel concept is proposed which replacesthe outer sheet metal, damping treatments, transverse beams, and interior trimof the existing structure. The new panel is weight optimized to a set of structural constraintsand its acoustic properties are evaluated. Results show a significant reductionin mass compared to the existing system with no degradation of the acoustic environment.A discussion of the results is presented, as is a suggestion for future research.
  •  
7.
  • Kaufmann, Markus, 1980- (författare)
  • Cost Optimization of Aircraft Structures
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Composite structures can lower the weight of an airliner significantly. Due to the higher process complexity and the high material cost, however, the low weight often comes with a significant increase in production cost. The application of cost-effective design strategies is one mean to meet this challenge. In this thesis, a simplified form of direct operating cost is suggested as a comparative value that in combination with multidisciplinary optimization enables the evaluation of a design solution in terms of cost and weight. The proposed cost optimization framework takes into account the manufacturing cost, the non-destructive testing cost and the lifetime fuel consumption based on the weight of the aircraft, thus using a simplified version of the direct operating cost as the objective function. The manufacturing cost can be estimated by means of different techniques. For the proposed optimization framework, feature-based parametric cost models prove to be most suitable. Paper A contains a parametric study in which a skin/stringer panel is optimized for a series of cost/weight ratios (weight penalties) and material configurations. The weight penalty (defined as the specific lifetime fuel burn) is dependent on the fuel consumption of the aircraft, the fuel price and the viewpoint of the optimizer. It is concluded that the ideal choice of the design solution is neither low-cost nor low-weight but rather a combination thereof. Paper B proposes the inclusion of non-destructive testing cost in the design process of composite components, and the adjustment of the design strength of each laminate according to inspection parameters. Hence, the scan pitch of the ultrasonic testing is regarded as a variable, representing an index for the guaranteed material quality. It is shown that the cost for non-destructive testing can be lowered if the quality level of the laminate is assigned and adjusted in an early design stage. In Paper C and Paper D the parameters of the manufacturing processes are upgraded during the cost optimization of the component. In Paper C, the framework is extended by the cost-efficient adaptation of parameters in order to reflect the situation when machining an aluminum component. For different weight penalties, the spar thickness and stringer geometry of the provided case study vary. In addition, another cutter is chosen with regard to the modified shape of the stringer. In Paper D, the methodology is extended to the draping of composite fabrics, thus optimizing not only the stacking layup, but also the draping strategy itself. As in the previous cases, the design alters for different settings of the weight penalty. In particular, one can see a distinct change in fiber layup between the minimum weight and the minimum cost solution. Paper E summarizes the work proposed in Papers A-D and provides a case study on a C-spar component. Five material systems are used for this case study and compared in terms of cost and weight. The case study shows the impact of the weight penalty, the material cost and the labor rate on the choice of the material system. For low weight penalties, for example, the aluminum spar is the most cost-effective solution. For high weight penalties, the RTM system is favorable. The paper also discusses shortcomings with the presented methodology and thereby opens up for future method developments.
  •  
8.
  • Kazemahvazi, Sohrab, 1981- (författare)
  • Impact Loading of Composite and Sandwich Structures
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Low weight is one of the most important factors in the design process of high speed naval ships, road vehicles and aircrafts. Lower structural weight enables the possibility of down-sizing the propulsion system and thus decrease manufacturing and operating costs as well as reducing the environmental impact. Two efficient ways of reducing the structural weight of a structure is by using high performance composite materials and by using geometrically efficient structures such as the sandwich concept. In addition to good quasi-static performance different structures have dynamic impact requirements. For a road vehicle this might be crash worthiness, an aircraft has to be able to sustain bird strikes or debris impact and a naval ship needs to be protected against blast or ballistic loading. In this thesis important aspects of dynamic loading of composite and sandwich structures are addressed and presented in the appended papers as follows. In paper A the notch sensitivity of non-crimp fabric glass bre composites is investigated. The notch sensitivity is investigated for several different laminate con gurations at varying tensile loading rate. It is shown that the non-crimp fabrics have very low notch sensitivity, especially for laminate con gurations with a large amount of bres in the load direction. Further, the notch sensitivity is shown to be fairly constant with increasing loading rates (up to 100/s). In paper B a heuristic approach is made in order to create an analytical model to predict the residual strength of composite laminates with multiple randomly distributed holes. The basis for this model is a comprehensive experimental programme. It is found that unidirectional laminates with holes predominantly fail through three failure modes: global net-section failure, local net-section failure and local shear failure. Each failure mode can be described by a physical geometric constant which is used to create the analytical model. The analytical model can predict the residual strength of unidirectional laminates with multiple, randomly distributed holes with good accuracy. In paper C and paper D, novel prismatic high performance all-composite sandwich cores are proposed. In paper C an analytical model is developed that predicts the strength and sti ness properties of the suggested cores. In paper D the prismatic cores are manufactured and tested in shear loading and out-of-plane compression loading. Further, the analytical model is used to create failure mechanism maps to map out the overall behaviour of the different core con gurations. The novel cores show very high speci c strength and sti ness and are potential candidates as cores in high performance naval ship hulls. In paper E the dynamic properties of prismatic composite cores are investigated. The dynamic out-of-plane strength of an unit cell is tested experimentally in a gas gun - Kolsky bar set-up. Especially, different failure mechanisms and their e ect on the structural strength are investigated. It is found that cores with low relative density (slender core members) show very large inertial stabilisation e ects and have a dynamic strength that can be more than seven times higher than the quasi-static strength. Cores with higher relative density show less increase in dynamic strength. The main reason for the dynamic strengthening is due to the strain rate sensitivity of the parent material rather than inertial stabilisation of the core members.
  •  
9.
  • Köll, Joonas, 1978- (författare)
  • Modeling of rigid foams
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The morphology and elastic properties of foams are investigated using models accounting for the cellular structure. Different modeling approaches are evaluated and compared to the cellular structures of real foams. The aim is to find an approach that produces realistic models that can be adjusted to match morphology measures taken form real foams. The elastic properties are computed using finite element analysis and the results are compared with both experimental results from mechanical testing and existing analytical models. A generalization of the existing analytical models is suggested for better agreement with the modeling results.In Paper A Voronoi and equilibrium foam models are generated and investigated. The Voronoi models are found to have a high content of short edges and small faces while conversion into equilibrium foams eliminates such small geometrical features. It is also seen that different seed point distribution algorithms generally result in different model topologies.In Paper B the relations between the sphere packing fraction and the resulting degree of volumetric polydispersity are studied as well as the relations between polydispersity and a number of morphology parameters. Both Voronoi and equilibrium foams are investigated and compared with data from real foams. Such comparisons indicate that the used method is somewhat limited in terms of polydispersity but provides a controlled way of varying the foam morphology.In Paper C equilibrium models are used to study the inuence of polydispersity, relative density and distribution of solid on the elastic properties of foams. It is found that the elastic moduli are very weakly coupled to the polydispersity while the inuence from the relative density and distribution of solid is considerably stronger. Existing analytical models from the literature are fitted to the results and generalizations are suggested for better agreement over the investigated range of relative density and distribution of solid.In Paper D equilibrium foam models with prescribed polydispersity are generated, analyzed and compared to real foams. The polydispersity of real foams is measured in micro-CT images and the results are applied to the models. The elastic properties are computed and the results are compared with experimental results and previous models with significantly lower polydispersity. No clear relation is found between the elastic properties and the polydispersity of equilibrium foams.
  •  
10.
  • Larberg, Ylva, 1980- (författare)
  • Forming of stacked unidirectional prepreg materials
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To reduce cost of structural composites, the development of more efficient manufacturing methods is of great interest. An automatic tape layer (ATL) can be used to perform the layup in an efficient way for flat sheets and the second step is by pressure forming the prepreg stack onto a given mould. Sheet forming of thermoset prepreg, also known as hot drape forming, is a promising manufacturing method when combined with automatically stacked laminates. To reach the desired shape, without flaws such as wrinkles and severe fibre angle deviation, knowledge about the forming behaviour of stacked material is important. A simulation of the forming can add to the understanding of mechanisms causing defects and also how to avoid them.A continuum mechanical finite element approach is used to model the forming of stacked unidirectional prepreg. This with the aim of finding mechanisms causing defects, such as out-of-plane wrinkling and in-plane waviness. Data from experimental characterisation of the materials are required for the constitutive material models. An experimental approach is used to investigate the intraply (within the layer) and interply (between the layers) deformation. The intraply deformation behaviour is investigated by a bias extension test, where resistance to deform and fibre rotation are registered. The interlaminar friction characteristics in the prepreg/prepreg interface are retrieved from tests performed with a specially designed rig. Measurements on the bending stiffness of the prepreg, both transverse to and in the fibre direction, are used in the out-of-plane model.Different aerospace-grade thermoset prepreg materials are tested and major differences in behaviour are found. Since epoxy is brittle, the resin is toughened by thermoplastics, for some materials in liquid phase and for others by solid particles. These particles seem to influence both the intraply deformation modes and increase the level of friction between layers.The experimental data from shear, friction and bending tests are used to calibrate the chosen material models. In-plane forming simulations confirm the affect stacking sequence have on the forming behaviour. Full-scale forming simulations on a joggles beam are performed with one of the tested material systems. Two different stacking sequences, with the same amount of fibre in the main directions, are analysed and compared. Both numerical and experimental forming shows that the coupling between layers, due to the interply friction, will affect the forming behaviour and in some cases create wrinkles. Wrinkles can develop both in the plane and out-of-plane, where only the in-plane waviness is present in the performed forming simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
doktorsavhandling (16)
licentiatavhandling (4)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (20)
Författare/redaktör
Zenkert, Dan, Profes ... (13)
Zenkert, Dan (3)
Lindbergh, Göran, Pr ... (2)
Zenkert, Dan, 1961- (2)
Cameron, Christopher ... (2)
Göransson, Peter, Pr ... (2)
visa fler...
Wennhage, Per, Dr. (2)
Lindström, Anders, 1 ... (2)
Hallström, Stefan, D ... (2)
Mårtensson, Per, 197 ... (2)
Zenkert, Dan, Profes ... (2)
Lindbergh, Göran, Pr ... (1)
Barsoum, Zuheir, 197 ... (1)
Stenius, Ivan (1)
Larsson, Per-Lennart ... (1)
Åkermo, Malin, 1969- (1)
Harnden, Ross (1)
Samuelsson, Jack (1)
Maddox, Stephen, Pro ... (1)
Stenius, Ivan, 1972- (1)
Hallström, Stefan (1)
Rice, Henry, Profess ... (1)
Sturesson, Per-Olof, ... (1)
Zimmermann, Kristian (1)
Carlsson, Leif, Prof ... (1)
Schneider, Christof (1)
Karlsson Hagnell, Ma ... (1)
Nyborg, Lars, Profes ... (1)
Wreland Lindström, R ... (1)
Shaffer, Milo, Profe ... (1)
Ermanni, Paolo, Prof ... (1)
Jacques, Eric, 1985- (1)
Ziegmann, Gerhard, P ... (1)
Kaufmann, Markus, 19 ... (1)
Åkermo, Malin, PhD (1)
Wennhage, Per, PhD (1)
Lund, Erik, Professo ... (1)
Kazemahvazi, Sohrab, ... (1)
Ravichandran, Gurusw ... (1)
Köll, Joonas, 1978- (1)
Gibson, Lorna, Profe ... (1)
Larberg, Ylva, 1980- (1)
Åkermo, Malin, Dr (1)
Potter, Kevin, Profe ... (1)
Åkermo, Malin, Docen ... (1)
Potter, Kevin (1)
Peuvot, Kevin, 1992- (1)
Lust, Enn, Professor (1)
Kazemahvazi, Sohrab, ... (1)
Åkermo, Malin, Assoc ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (20)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Teknik (19)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy