SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhai Gang) "

Sökning: WFRF:(Zhai Gang)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qu, Yanhua, 1974-, et al. (författare)
  • The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 10.1073/pnas.2012398118:13, s. e2012398118-e2012398118
  • Tidskriftsartikel (refereegranskat)abstract
    • Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai–Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.
  •  
2.
  • Shu, Tingting, et al. (författare)
  • Zebrafish cyp17a1 Knockout Reveals that Androgen-Mediated Signaling is Important for Male Brain Sex Differentiation
  • 2020
  • Ingår i: General and Comparative Endocrinology. - : Academic Press. - 0016-6480 .- 1095-6840. ; 295
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain sex differentiation is a complex process, wherein genes and steroid hormones act to induce specific gender brain differentiation. Testosterone (T) derived from the gonads has been linked to neural circuit modeling in a sex-specific manner. Previously, we have shown that cyp17a1 knockout (KO) zebrafish have low plasma androgen levels, and display compromised male-typical mating behaviors. In this study, we demonstrated that treatment of cyp17a1 KO males with T or 11-ketotestosterone (11-KT) is sufficient to rescue mating impairment by restoring the male-typical secondary sex characters (SSCs) and mating behaviors, confirming an essential role of androgen in maintaining SSCs and mating behaviors. Brain steroid hormone analysis revealed that cyp17a1 KO fish have reduced levels of T and 11-KT. We performed RNA sequencing on brain samples of control and cyp17a1 KO male zebrafish to get insights regarding the impact of cyp17a1 KO on gene expression pattern, and to correlate it with the observed disruption of male-typical mating behaviors. Transcriptome analysis of cyp17a1 KO males showed a differential gene expression when compared to control males. In total, 358 genes were differentially regulated between control males and KO males. Important genes including brain aromatase (cyp19a1b), progesterone receptor (pgr), deiodinase (dio2), and insulin-like growth factor 1 (igf1) that are involved in brain functions, as well as androgen response genes including igf1, frem1a, elovl1a, pax3a, mmp13b, hsc70, ogg1 were regulated. RT-qPCR analysis following rescue of cyp17a1 KO with T and 11-KT further suggested that androgen-mediated signaling is disrupted in the cyp17a1 KO fish. Our results indicated that cyp17a1 KO fish have an incomplete masculinization and altered brain gene expression, which could be due to decreased androgen levels.
  •  
3.
  • Zhai, Gang, et al. (författare)
  • Sex-specific differences in zebrafish brains
  • 2022
  • Ingår i: Biology of Sex Differences. - : BioMed Central (BMC). - 2042-6410. ; 13:1
  • Forskningsöversikt (refereegranskat)abstract
    • In this systematic review, we highlight the differences between the male and female zebrafish brains to understand their differentiation and their use in studying sex-specific neurological diseases. Male and female brains display subtle differences at the cellular level which may be important in driving sex-specific signaling. Sex differences in the brain have been observed in humans as well as in non-human species. However, the molecular mechanisms of brain sex differentiation remain unclear. The classical model of brain sex differentiation suggests that the steroid hormones derived from the gonads are the primary determinants in establishing male and female neural networks. Recent studies indicate that the developing brain shows sex-specific differences in gene expression prior to gonadal hormone action. Hence, genetic differences may also be responsible for differentiating the brain into male and female types. Understanding the signaling mechanisms involved in brain sex differentiation could help further elucidate the sex-specific incidences of certain neurological diseases. The zebrafish model could be appropriate for enhancing our understanding of brain sex differentiation and the signaling involved in neurological diseases. Zebrafish brains show sex-specific differences at the hormonal level, and recent advances in RNA sequencing have highlighted critical sex-specific differences at the transcript level. The differences are also evident at the cellular and metabolite levels, which could be important in organizing sex-specific neuronal signaling. Furthermore, in addition to having one ortholog for 70% of the human gene, zebrafish also shares brain structural similarities with other higher eukaryotes, including mammals. Hence, deciphering brain sex differentiation in zebrafish will help further enhance the diagnostic and pharmacological intervention of neurological diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy