SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Dongyuan) "

Sökning: WFRF:(Zhang Dongyuan)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Dantong, et al. (författare)
  • MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4
  • 2016
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 7:29, s. 45199-45213
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. Results: miR-20a-5p negatively regulated Smad4 by directly targeting its 3UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Methods: Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan-Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. Conclusions: miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer.
  •  
2.
  • Mi, Yushuai, et al. (författare)
  • Down-regulation of Barx2 predicts poor survival in colorectal cancer
  • 2016
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0006-291X .- 1090-2104. ; 478:1, s. 67-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Human BarH-like homeobox 2 (Barx2), a homeodomain factor of the Bar family, has an important role in controlling the expression of cell adhesion molecules and has been reported in an increasing array of tumor types except colorectal cancer (CRC). The purpose of the current study was to characterize the expression of Barx2 and assess the clinical significance of Barx2 in CRC. First, we analyzed the expression of Barx2 in two independent public datasets from Oncomine. Subsequently, we evaluated Barx2 mRNA and protein expression by quantitative real-time PCR and western blotting, respectively. It was determined that Barx2 expression was lower in tumor tissues than in adjacent non-tumorous colorectal tissues of CRC patients, consistent with results from the public datasets. Subsequently, a tissue microarray containing 196 CRC specimens was evaluated for Barx2 expression by immunohistochemical staining. It was found that low expression of Barx2 significantly correlated with TNM stage, AJCC stage, differentiation, and relapse in patients with CRC. Patients with lower levels of Barx2 expression showed reduced disease-free survival and overall survival. Furthermore, a trend toward shorter overall survival in the patient group with Barx2-negative tumors independent of advanced AJCC stage and poor differentiation was determined by Kaplan-Meier survival analysis. Based on univariate and multivariate analyses, Barx2 expression was an independent prognostic factor for determining CRC prognosis. Taken together, low Barx2 expression was associated with the progression of CRC and could serve as a potential independent prognostic biomarker for patients with CRC. (C) 2016 The Authors. Published by Elsevier Inc.
  •  
3.
  • Mi, Yushuai, et al. (författare)
  • miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation
  • 2017
  • Ingår i: Cancer Letters. - : ELSEVIER IRELAND LTD. - 0304-3835 .- 1872-7980. ; 389, s. 11-22
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously discovered that Ras association domain family member 6 (RASSF6) was downregulated and predicted poor prognosis in GC patients. However, the mechanisms of the down regulation of RASSF6 in GC remained unclear. Increasing evidence indicates that dysregulation of microRNAs promotes the progression of cancer through the repression of tumour suppressors. Here, we identified miR-181a-5p as a novel regulator of RASSF6 in GC. Functionally, ectopic expression or silencing of miR-181a-5p, respectively, promoted or inhibited GC cell proliferation, colony formation and cell cycle transition, as well as enhanced or prevented the invasion, metastasis of GC cells and epithelial to mesenchymal transition of GC cells in vitro and in vivo. Molecularly, miR-181a-5p functioned as an onco-miRNA by activating the RASSF6-regulated MAKP pathway. Overexpression or silencing of RASSF6 could partially reverse the effects of the overexpression or repression of miR-181a-5p on GC progress caused by activation of the MAKP pathway in vitro and in vivo. Clinically, high miR-181a-5p expression predicted poor survival in GC patients, especially combined with low RASSF6 expression. Collectively, we identified miR-181a-5p as an onco-miRNA, which acts by directly repressing RASSF6 in GC. (C) 2017 The Authors. Published by Elsevier Ireland Ltd.
  •  
4.
  • Zhao, Senlin, et al. (författare)
  • miR-4775 promotes colorectal cancer invasion and metastasis via the Smad7/TGF beta-mediated epithelial to mesenchymal transition
  • 2017
  • Ingår i: Molecular Cancer. - : BIOMED CENTRAL LTD. - 1476-4598. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Despite advancements in the diagnosis and treatment of colorectal cancer (CRC), many patients die because of tumor metastasis or recurrence. Therefore, identifying new prognostic markers and elucidating the mechanisms of CRC metastasis and recurrence will help to improve the prognosis of the disease. As dysregulation of microRNAs is strongly related to cancer progression, the aim of this study was to identify the role of miR-4775 in the prognosis of CRC patients and the underling mechanisms involved in CRC progression. Methods: qPCR and in situ hybridization were used to evaluate the expression of miR-4775 in 544 pairs of paraffin-embedded normal and CRC tissues. Kaplan-Meier analysis with the log-rank test was used for survival analyses. Immunohistochemical staining was applied to investigate the expression of miR-4775-regulated Smad7/TGF beta pathway-associated markers. In vitro and in vivo invasion and metastasis assays were used to explore the function of miR-4775 in the progression of CRC. Results: miR-4775 was identified as a high-risk factor for CRC metastasis and recurrence, with high levels predicting poor survival among the 544 studied CRC patients. Furthermore, high miR-4775 expression promoted the invasion of CRC cells as well as metastasis and the epithelial to mesenchymal transition (EMT) via Smad7-mediated activation of TGF beta signaling both in vitro and in vivo. Downregulating miR-4775 or overexpressing Smad7 reversed the tumor-promoting roles of miR-4775/ Smad7/TGF beta in vitro and in vivo. Conclusion: miR-4775 promotes CRC metastasis and recurrence in a Smad7/TGF beta signaling-dependent manner, providing a new therapeutic target for inhibiting the metastasis or recurrence of the disease.
  •  
5.
  • Gu, Dong, et al. (författare)
  • Growth of Single-Crystal Mesoporous Carbons with Im(3)over-barm Symmetry
  • 2010
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 22:16, s. 4828-4833
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly ordered mesoporous carbon FDU-16 rhombic dodecahedral single crystals with body-centered cubic structure (space group Im (3) over barm) have been successfully synthesized by employing an organic-organic assembly of triblock copolymer Pluronic F127 (EO106PO70EO106) and phenol/formaldehyde resol in basic aqueous solution. Synthetic factors (including reaction time, temperature, and stirring rate) are explored for controlling the formation of rhombic dodecahedral single crystals. The optimal stirring rate and the reaction temperature are 300 +/- 10 rpm and similar to 66 degrees C, respectively. High-resolution scanning electron microscopy (HRSEM), scanning transmission electron microscopy (STEM), and ultramicrotomy are applied to study the fine structures of the carbon single crystals. The mesopores are arranged in body-centered cubic symmetry throughout the entire particle. Surface steps are clearly observed in the {110} surface, which suggests a layer-by-layer growth of the mesoporous carbon FDU-16 single crystals. Cryo-SEM results from the reactant solution confirm the formation of resol/F127 unit micelles, further supporting the layer-by-layer growth process. The mesoporous carbon FDU-16 single crystals grow up to the final size of 2-4 mu m within 2 days. These findings may have consequences for the growth mechanism of other carbon materials in aqueous solution; moreover, the high-quality single crystals also have potential applications in nanodevice technologies.
  •  
6.
  • Zhang, Zhi, 1982- (författare)
  • A study of flow fields during filling of a sampler
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • More and more attention has been paid to decreasing the number and size of non-metallic inclusions existing in the final products recently in steel industries. Therefore, more efforts have been made to monitor the inclusions' size distributions during the metallurgy process, especially at the secondary steelmaking period. A liquid sampling procedure is one of the commonly applied methods that monitoring the inclusion size distribution in ladles, for example, during the secondary steelmaking. Here, a crucial point is that the steel sampler should be filled and solidified without changing the inclusion characteristics that exist at steel making temperatures. In order to preserve the original size and distributions in the extracted samples, it is important to avoid their collisions and coagulations inside samplers during filling. Therefore, one of the first steps to investigate is the flow pattern inside samplers during filling in order to obtain a more in-depth knowledge of the sampling process to make sure that the influence is minimized. The main objective of this work is to fundamentally study the above mentioned sampler filling process. A production sampler employed in the industries has been scaled-up according to the similarity of Froude Number in the experimental study. A Particle Image Velocimetry (PIV) was used to capture the flow field and calculate the velocity vectors during the entire experiment. Also, a mathematical model has been developed to have an in-depth investigate of the flow pattern in side the sampler during its filling. Two different turbulence models were applied in the numerical study, the realizable k-ε model and Wilcox k-ω model. The predictions were compared to experimental results obtained by the PIV measurements. Furthermore, it was illustrated that there is a fairly good agreement between the measurements obtained by PIV and calculations predicted by the Wilcox k-ω model. Thus, it is concluded that the Wilcox k-ω model can be used in the future to predict the filling of steel samplers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy