SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Jian 1989) "

Sökning: WFRF:(Zhang Jian 1989)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Longwei, et al. (författare)
  • A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis
  • 2023
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 62:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The deficient catalytic activity of nanozymes and insufficient endogenous H2O2 in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS2 nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS2@CA) is presented that is made from few-layer MoS2 nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H2O2 self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.
  •  
2.
  • Wang, Longwei, et al. (författare)
  • Regulation of functional groups enable the metal-free PDINH/GO advisable antibacterial photocatalytic therapy
  • 2023
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 451
  • Tidskriftsartikel (refereegranskat)abstract
    • N-type organic semiconductor perylene-3,4,9,10-tetracarboxylic acid diimide (PDINH) are well-investigated photocatalyst. However, the photocatalytic potential for antibacterial therapy has been underexplored owing to the insufficient light absorption and rapid recombination of light-induced carriers. Herein, functional group-regulated is introduced by recrystallizing PDINH on the surface of GO in situ, endowing the PDINH/GO with enhanced photocatalytic properties, which harvest light energy across the full spectrum form ultraviolet to near-infrared. Simultaneously, the enhanced photogenerated carriers can activate Lewis base of GO to form an amide bond on the interface between bacteria and material, exhibiting high-efficient and steady bacteria trap. Compared with PDINH, both in vitro and in vivo all demonstrated PDINH/GO possess excellent antibacterial effect. In addition, as a non-metallic semiconductor, PDINH/GO shows capacity of enhancing epidermal cells proliferation and migration, resulting in successful infectious wound regeneration in mice and the side effects in vivo are negligible. Such the integration of wide-spectrum response, high efficiency of carrier separation, intentional bacterial capture and accelerated would healing of PDINH/GO not only enables an effective antibacterial therapy but also contributes to a successful example to activate nanomaterials by regulation of functional groups.
  •  
3.
  • Guo, Jia Wei, et al. (författare)
  • 2D Co metal-organic framework nanosheet as an oxidase-like nanozyme for sensitive biomolecule monitoring
  • 2023
  • Ingår i: Rare Metals. - : Springer Science and Business Media LLC. - 1001-0521 .- 1867-7185. ; 42:3, s. 797-805
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Nanozyme-based biomolecules sensitive and quantitative detection is an attractive strategy due to their high chemical, thermal stability and reactive activity. Here, we have synthesized a significant number of two-dimensional (2D) cobalt-metal-organic framework (Co-MOF) nanosheets with oxidase (OXD)-like activity using a facile solvothermal method in one pot for biomolecule monitoring. The synthesized Co-MOF nanosheets exhibit strong stability, higher specific surface area and more active sites due to their MOF structure. Such Co-MOF nanosheets with excellent OXD-like activity show adequate analytical performance in the quantitative determination of dopamine (DA) and glutathione (GSH) with a wider dynamic sensing range and lower detection limits (DA and GSH: 0.24 and 0.067 μmol·L−1, 3σ/slope, where σ is standard deviation of the blank). This work extends the application of 2D-MOF structures in bioassays and brings new insights into the application of OXD-like nanozymes in bioassays. Graphical abstract: [Figure not available: see fulltext.]
  •  
4.
  • Li, Mengtian, 1989, et al. (författare)
  • Sealing System Analysis of Rotary Piston Pump
  • 2019
  • Ingår i: IOP Conference Series: Materials Science and Engineering. - 1757-8981 .- 1757-899X. ; 520:1
  • Konferensbidrag (refereegranskat)abstract
    • Rotary piston pump is designed by the Wankel engine. The structure, working feature and sealing system of rotary piston pump are introduced. The mathematical model of the internal cylinder profile and the theoretical flow are obtained by analysing the structural characteristics of the new pump. The axial seal and face seal of the rotary piston pump and their structures are analysed. The force analysis of the sealing strip is carried out in various cases. It can be concluded from the analysis that, for axial sealing, the key parameters that affect seal strip wear are working pressure, rotate speed of the crankshaft and the friction coefficient between sealing strip and inner wall of the cylinder. For axial sealing, the force of the spring under the curved sealing strips, the size of the sealing rings and curved sealing strips and material of them are the key design parameters.
  •  
5.
  • Wang, Longwei, et al. (författare)
  • Construction of S-N-C bond for boosting bacteria-killing by synergistic effect of photocatalysis and nanozyme
  • 2023
  • Ingår i: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 325
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial infection-related diseases are major public safety issues leads to millions of deaths annually. Herein, a porous sulfur doped graphitic carbon nitride (g-SCN) for ecofriendly, metal-free and low systemic toxicity were synthesized. Sulfur doping enables to broaden the absorption spectrum and promote the photocarriers separation for photocatalysis enhancement. Moreover, sulfur element will coordinate with nitrogen, changing the electronic state and endowing g-SCN with the property of nanozyme. More importantly, we established different models and confirmed that S-N-C coordination is the source of peroxidase (POD)-like activity through theory and experiment. The increased specific surface area of g-SCN, ascribing to the porous structure, makes it easier to trap bacteria. With the synergistic effect of photocatalysis and nanozyme, the prepared g-SCN has the ability to kill both gram-negative and gram-positive bacterium, with an antibacterial efficiency up to 100%. This work provides innovative synergistic strategy for constructing nanomaterials for highly efficient antibacterial therapy.
  •  
6.
  • Wu, Keming, et al. (författare)
  • Surface Reconstruction on Uniform Cu Nanodisks Boosted Electrochemical Nitrate Reduction to Ammonia
  • 2022
  • Ingår i: ACS Materials Letters. - : American Chemical Society (ACS). - 2639-4979. ; 4, s. 650-656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Haber-Bosch (HB) process has provided most of commercial ammonia at the expense of high energy consumption and high CO2 emission. Nitrate electroreduction is showing great potential as an alternative route for the green and scale-up synthesis of ammonia at ambient conditions. However, the performance has lagged due to lack of efficient electrocatalysts. In this work, we present the facile synthesis of uniform Cu nanodisks with exposed (111) facets as highly active electrocatalyst for electrochemical ammonia synthesis, delivering a high ammonia yield of 2.16 mg mg-1cat h-1 and a maximum Faradaic efficiency of 81.1% at -0.5 V versus a reversible hydrogen electrode (RHE). The remarkable activity is originated from the surface reconstructed triatomic Cu clusters due to the cathodic deoxygenation process. As a result, the reconstructed surface shows enhanced affinity to the adsorption of nitrate ions which undergo successive break of three N-O bonds, followed by subsequent formation of three N-H bonds to finally form NH3. The present study provides the feasible preparation of Cu based advanced catalysts and a unique insight into the mechanism of nitrate electroreduction.
  •  
7.
  • Yang, Zhongwei, et al. (författare)
  • Application of Biomass-Based Nanomaterials in Energy
  • 2023
  • Ingår i: Advanced Energy and Sustainability Research. - 2699-9412. ; 4:12
  • Forskningsöversikt (refereegranskat)abstract
    • The utilization of biomass as a sustainable and renewable resource for nanomaterial synthesis has received considerable attention in recent years. Through the efficient utilization of biomass waste, opportunities for energy production, energy conversion, and the fabrication of nanomaterials can be maximized. The combination of biomass-based nanomaterials with additional nanomaterials makes the composite system have more remarkable performance, which further facilitates the transformation procedure of biomass-based nanomaterials for applications. This comprehensive review provides an overview of the preparation and applications of biomass-based nanomaterials. The preparation section covers a range of methods for synthesizing biomass-based nanomaterials, including biomass-based carbonaceous nanomaterials, biomass-based carbon nitride nanomaterials, nanomaterials derived from biomass templates, biomass-based nanomaterials as carriers, and the use of biomass for metal ion reduction. The applications section explores the diverse applications of biomass-based nanomaterials, such as hydrogen production, carbon dioxide reduction, batteries, and supercapacitors. The unique properties and advantages of biomass-based nanomaterials in each application are discussed. The conclusion summarizes the current progress and presents future perspectives for the development and utilization of biomass-based nanomaterials. This review emphasizes the potential of biomass as a valuable and sustainable source for nanomaterial synthesis, opening up promising opportunities in various fields.
  •  
8.
  • Zhang, Jibin, et al. (författare)
  • A Multifunctional "Halide-Equivalent" Anion Enabling Efficient CsPb(Br/I)(3) Nanocrystals Pure-Red Light-Emitting Diodes with External Quantum Efficiency Exceeding 23%
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure-red perovskite LEDs (PeLEDs) based on CsPb(Br/I)(3) nanocrystals (NCs) usually suffer from a compromise in emission efficiency and spectral stability on account of the surface halide vacancies-induced nonradiative recombination loss, halide phase segregation, and self-doping effect. Herein, a "halide-equivalent" anion of benzenesulfonate (BS-) is introduced into CsPb(Br/I)(3) NCs as multifunctional additive to simultaneously address the above challenging issues. Joint experiment-theory characterizations reveal that the BS- can not only passivate the uncoordinated Pb2+-related defects at the surface of NCs, but also increase the formation energy of halide vacancies. Moreover, because of the strong electron-withdrawing property of sulfonate group, electrons are expected to transfer from the CsPb(Br/I)(3) NC to BS- for reducing the self-doping effect and altering the n-type behavior of CsPb(Br/I)(3) NCs to near ambipolarity. Eventually, synergistic boost in device performance is achieved for pure-red PeLEDs with CIE coordinates of (0.70, 0.30) and a champion external quantum efficiency of 23.5%, which is one of the best value among the ever-reported red PeLEDs approaching to the Rec. 2020 red primary color. Moreover, the BS--modified PeLED exhibits negligible wavelength shift under different operating voltages. This strategy paves an efficient way for improving the efficiency and stability of pure-red PeLEDs.
  •  
9.
  • Zhang, Xiaoyu, et al. (författare)
  • Recent progress in graphitic carbon nitride-based materials for antibacterial applications: synthesis, mechanistic insights, and utilization
  • 2024
  • Ingår i: Microstructures. - 2770-2995. ; 4:2
  • Forskningsöversikt (refereegranskat)abstract
    • Recent breakthroughs in graphitic carbon nitride (g-C3N4)-based materials have catalyzed the development of highly effective antibacterial strategies. This comprehensive review delves into the synthesis, mechanistic insights, and applications of g-C3N4 in the realm of antibacterial research. The introduction first highlights the importance of antibacterial materials, emphasizing the urgent need for innovative solutions in the face of bacterial infections and the escalating challenges posed by antibiotic resistance. Continuing, the structural attributes and distinctive characteristics of g-C3N4 are examined in detail, elucidating its inherent properties that make it a compelling candidate for antibacterial applications. Subsequently, we meticulously dissect various methods used in the synthesis of g-C3N4, encompassing both top-down and bottom-up approaches, offering valuable insights into the production of this promising nanomaterial. Furthermore, it delves deeper into the sterilization mechanisms of g-C3N4-based nanomaterials, encompassing a spectrum of strategies, including physical structure sterilization, photocatalytic antibacterial effects, enzymatic antibacterial processes, and the synergetic benefits that emerge from the fusion of these mechanisms. Then, it comprehensively examines the practical applications of g-C3N4-based nanomaterials in antibacterial endeavors, encompassing their pivotal roles in water purification, air purification, treatment of bacterial infections, and the development of antibacterial layers in diverse settings. In conclusion, we encapsulate the crux of our findings and provide a forward-looking perspective on the potential challenges and opportunities in the arena of g-C3N4-based materials for antibacterial applications. This review aspires to galvanize further exploration and innovation in the design of high-performance g-C3N4-based materials, thereby contributing to the progression of antibacterial solutions.
  •  
10.
  • Deng, Dunyong, 1989- (författare)
  • On the Microstructures and Anisotropic Mechanical Behaviours of Additively Manufactured IN718
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive manufacturing (AM), also known as 3D printing, offers great design flexibility for manufacturing components with complex geometries, and has attracted significant interest in the aero and energy industries in the past decades. Among the commercial AM processes, selective laser melting (SLM) and electron beam melting (EBM) are the two most widely used ones for metallic materials. Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties, weldability and low cost. Due to its excellent weldability, IN718 has been intensively applied in the AM filed, to gain more understanding of the AM processes and fully realize AM’s potentials.The study objects in the present thesis include both EBM and SLM IN718. The solidification conditions in EBM and SLM are very different and are different to that of conventional cast, leading to unique microstructures mechanical properties. Therefore, this thesis aims to gain better understanding of the microstructures and anisotropic mechanical behaviours of both EBM and SLM IN718, by detailed characterizations and by comparisons with the forged counterpart.The as-built microstructure of EBM IN718 is spatially dependent: the periphery (contour) region has a mixture of equiaxed and columnar grains, while the bulk (hatch) region has columnar grains elongated along the building direction; the last solidified region close to the top sample surface shows segregation and Laves phases, otherwise the rest of the whole sample is well homogenized. Differently, the as-built microstructure of SLM IN718 is spatially homogeneous: the grains is rather equiaxed and with subgrain cell structures. These microstructures also respond differently to the standard heat treatment routines for the conventional counterparts.Anisotropic mechanical properties are evident in the room temperature tensile tests and high temperature dwell-fatigue tests. The anisotropic tensile properties of EBM IN718 at room temperature are more likely due to the directional alignment of porosities along the building direction rather than the strong crysiii tallographic texture of ⟨100⟩ _ building direction. While for SLM IN718, the anisotropy is more likely attributed to the different extents of ‘work-hardening’ or dislocations accumulated between the horizontally and vertically built specimens. The anisotropy mechanisms in dwell-fatigue crack propagations at 550 ◦C for EBM and SLM IN718 are identical: higher effective stress intensity factor when intergranular cracking path is perpendicular to the loading direction, but lower effective stress intensity factor when intergranular cracking path is parallel to or slightly deviated from the loading direction.The 2160s dwell-fatigue cracking behaviours at 550 ◦C are of significant interest for AM IN718, of which test condition is similar to that of real service for IN718 disk in turbine engine. Generally, after conventional or short-term heat treatments, EBM IN718 shows better dwell-fatigue cracking resistance than SLM IN718. The damage mechanism is different for EBM and SLM IN718: the intergranular cracking in EBM IN718 is due to environmentally assisted grain boundary attack, while creep damage is active for SLM IN718. The considerably ‘deformed’ microstructure, specifically the subgrain cell structures in SLM IN718 resulted from the manufacturing process, is believed to activate creep damage even at a low temperature of 550 ◦C. And for SLM IN718, heat treatment routine must be carefully established to alter the ‘deformed’ microstructure for better time dependent cracking resistance at elevated temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy