SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Jingjing 1986) "

Sökning: WFRF:(Zhang Jingjing 1986)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yamamoto, Io, et al. (författare)
  • Telomeric double-strand DNA-binding proteins DTN-1 and DTN-2 ensure germline immortality in Caenorhabditis elegans.
  • 2021
  • Ingår i: eLife. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomeres are nucleoprotein complexes at the ends of chromosomes and are indispensable for the protection and lengthening of terminal DNA. Despite the evolutionarily conserved roles of telomeres, the telomeric double-strand DNA (dsDNA)-binding proteins have evolved rapidly. Here, we identified double-strand telomeric DNA-binding proteins (DTN-1 and DTN-2) in Caenorhabditis elegans as non-canonical telomeric dsDNA-binding proteins. DTN-1 and DTN-2 are paralogous proteins that have three putative MYB-like DNA-binding domains and bind to telomeric dsDNA in a sequence-specific manner. DTN-1 and DTN-2 form complexes with the single-strand telomeric DNA-binding proteins POT-1 and POT-2 and constitutively localize to telomeres. The dtn-1 and dtn-2 genes function redundantly, and their simultaneous deletion results in progressive germline mortality, which accompanies telomere hyper-elongation and chromosomal bridges. Our study suggests that DTN-1 and DTN-2 are core shelterin components in C. elegans telomeres that act as negative regulators of telomere length and are essential for germline immortality.
  •  
2.
  • Zhang, Jingjing, 1986, et al. (författare)
  • The BRCA2-MEILB2-BRME1 complex governs meiotic recombination and impairs the mitotic BRCA2-RAD51 function in cancer cells.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer susceptibility gene II (BRCA2) is central in homologous recombination (HR). In meiosis, BRCA2 binds to MEILB2 to localize to DNA double-strand breaks (DSBs). Here, we identify BRCA2 and MEILB2-associating protein 1 (BRME1), which functions as a stabilizer of MEILB2 by binding to an α-helical N-terminus of MEILB2 and preventing MEILB2 self-association. BRCA2 binds to the C-terminus of MEILB2, resulting in the formation of the BRCA2-MEILB2-BRME1 ternary complex. In Brme1 knockout (Brme1-/-) mice, the BRCA2-MEILB2 complex is destabilized, leading to defects in DSB repair, homolog synapsis, and crossover formation. Persistent DSBs in Brme1-/- reactivate the somatic-like DNA-damage response, which repairs DSBs but cannot complement the crossover formation defects. Further, MEILB2-BRME1 is activated in many human cancers, and somatically expressed MEILB2-BRME1 impairs mitotic HR. Thus, the meiotic BRCA2 complex is central in meiotic HR, and its misregulation is implicated in cancer development.
  •  
3.
  • Adhikari, Deepak, et al. (författare)
  • Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan
  • 2016
  • Ingår i: Cell Research. - : Springer Science and Business Media LLC. - 1001-0602 .- 1748-7838. ; 26, s. 1212-1225
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 IBCB, SIBS, CAS. A unique feature of female germ cell development in mammals is their remarkably long arrest at the prophase of meiosis I, which lasts up to 50 years in humans. Both dormant and growing oocytes are arrested at prophase I and completely lack the ability to resume meiosis. Here, we show that the prolonged meiotic arrest of female germ cells is largely achieved via the inhibitory phosphorylation of Cdk1 (cyclin-dependent kinase 1). In two mouse models where we have introduced mutant Cdk1 T14AY15F which cannot be inhibited by phosphorylation (Cdk1AF) in small meiotically incompetent oocytes, the prophase I arrest is interrupted, leading to a premature loss of female germ cells. We show that in growing oocytes, Cdk1AF leads to premature resumption of meiosis with condensed chromosomes and germinal vesicle breakdown followed by oocyte death, whereas in dormant oocytes, Cdk1AF leads to oocyte death directly, and both situations damage the ovarian reserve that maintains the female reproductive lifespan, which should be around 1 year in mice. Furthermore, interruption of the inhibitory phosphorylation of Cdk1 results in DNA damage, which is accompanied by induction of the Chk2 (checkpoint kinase 2)-p53/p63-dependent cell death pathway, which eventually causes global oocyte death. Together, our data demonstrate that the phosphorylation-mediated suppression of Cdk1 activity is one of the crucial factors that maintain the lengthy prophase arrest in mammalian female germ cells, which is essential for preserving the germ cell pool and reproductive lifespan in female mammals.
  •  
4.
  • Lu, Yonggang, et al. (författare)
  • 1700029I15Rik orchestrates the biosynthesis of acrosomal membrane proteins required for sperm-egg interaction.
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 120:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sperm acrosomal membrane proteins, such as Izumo sperm-egg fusion 1 (IZUMO1) and sperm acrosome-associated 6 (SPACA6), play essential roles in mammalian gamete binding or fusion. How their biosynthesis is regulated during spermiogenesis has largely remained elusive. Here, we show that 1700029I15Rik knockout male mice are severely subfertile and their spermatozoa do not fuse with eggs. 1700029I15Rik is a type-II transmembrane protein expressed in early round spermatids but not in mature spermatozoa. It interacts with proteins involved in N-linked glycosylation, disulfide isomerization, and endoplasmic reticulum (ER)-Golgi trafficking, suggesting a potential role in nascent protein processing. The ablation of 1700029I15Rik destabilizes non-catalytic subunits of the oligosaccharyltransferase (OST) complex that are pivotal for N-glycosylation. The knockout testes exhibit normal expression of sperm plasma membrane proteins, but decreased abundance of multiple acrosomal membrane proteins involved in fertilization. The knockout sperm show upregulated chaperones related to ER-associated degradation (ERAD) and elevated protein ubiquitination; strikingly, SPACA6 becomes undetectable. Our results support for a specific, 1700029I15Rik-mediated pathway underpinning the biosynthesis of acrosomal membrane proteins during spermiogenesis.
  •  
5.
  • Padmanaban, Shilpa, et al. (författare)
  • Caenorhabditis elegans telomere- binding proteins TEBP-1 and TEBP-2 adapt the Myb module to dimerize and bind telomeric DNA
  • 2024
  • Ingår i: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - 0027-8424 .- 1091-6490. ; 121:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Protecting chromosome ends from misrecognition as double- stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N- terminal homodimerization and C- terminal Myb- domain- mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb- containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X - ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA- binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X - ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.
  •  
6.
  • Pendlebury, Devon F, et al. (författare)
  • Structure of a meiosis-specific complex central to BRCA2 localization at recombination sites.
  • 2021
  • Ingår i: Nature structural & molecular biology. - : Springer Science and Business Media LLC. - 1545-9985 .- 1545-9993. ; 28:8, s. 671-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Meiotic cells invoke breast cancer susceptibility gene 2 (BRCA2) to repair programmed double-stranded DNA breaks and accomplish homologous recombination. The meiosis-specific protein MEILB2 facilitates BRCA2 recruitment to meiotic recombination sites. Here, we combine crystallography, biochemical analysis and a mouse meiosis model to reveal a robust architecture that ensures meiotic BRCA2 recruitment. The crystal structure of the MEILB2-BRCA2 complex reveals how two MEILB2 homodimers sandwich two chains of BRCA2 to afford a 4:2 architecture. The sandwich lacks close contact between the two MEILB2 dimers or the two BRCA2 chains. Instead, the two halves of each BRCA2 chain bridge two MEILB2 subunits from different homodimers to form the MEILB2-BRCA2-MEILB2 sandwich. Several identical residues from the two MEILB2 subunits are employed to engage the BRCA2 halves, justifying their strict conservation. Mutational analysis of the interface reveals a synergistic mechanism for MEILB2-BRCA2 recruitment during meiosis. Overall, these studies demonstrate how BRCA2 efficiently localizes in the cell to facilitate meiosis.
  •  
7.
  • Risal, Sanjiv, et al. (författare)
  • MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice
  • 2017
  • Ingår i: Cell Discovery. - : Springer Science and Business Media LLC. - 2056-5968. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75-8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (a subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis.
  •  
8.
  • Tu, Zhaowei, et al. (författare)
  • Speedy A-Cdk2 binding mediates initial telomere-nuclear envelope attachment during meiotic prophase I independent of Cdk2 activation
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:3, s. 592-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomere attachment to the nuclear envelope (NE) is a prerequisite for chromosomemovement duringmeiotic prophase I that is required for pairing of homologous chromosomes, synapsis, and homologous recombination. Here we show that Speedy A, a noncanonical activator of cyclin-dependent kinases (Cdks), is specifically localized to telomeres in prophase I male and female germ cells in mice, and plays an essential role in the telomere-NE attachment. Deletion of Spdya in mice disrupts telomere-NE attachment, and this impairs homologous pairing and synapsis and leads to zygotene arrest in male and female germ cells. In addition, we have identified a telomere localization domain on Speedy A covering the distal N terminus and the Cdk2-binding Ringo domain, and this domain is essential for the localization of Speedy A to telomeres. Furthermore, we found that the binding of Cdk2 to Speedy A is indispensable for Cdk2' s localization on telomeres, suggesting that Speedy A and Cdk2 might be the initial components that are recruited to the NE for forming the meiotic telomere complex. However, Speedy A-Cdk2-mediated telomere-NE attachment is independent of Cdk2 activation. Our results thus indicate that Speedy A and Cdk2 might mediate the initial telomere-NE attachment for the efficient assembly of the telomere complex that is essential for meiotic prophase I progression.
  •  
9.
  • Zhang, Jingjing, 1986, et al. (författare)
  • A meiosis-specific BRCA2 binding protein recruits recombinases to DNA double-strand breaks to ensure homologous recombination.
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) to maintain genomic integrity. Recombinase recruited to the DSBs by the mediator protein BRCA2 catalyzes the homology-directed repair. During meiotic HR, programmed DSBs are introduced genome-wide but their repair mechanisms, including the regulation of BRCA2, have remained largely elusive. Here we identify a meiotic localizer of BRCA2, MEILB2/HSF2BP, that localizes to the site of meiotic DSBs in mice. Disruption of Meilb2 abolishes the localization of RAD51 and DMC1 recombinases in spermatocytes, leading to errors in DSB repair and male sterility. MEILB2 directly binds to BRCA2 and regulates its association to meiotic DSBs. We map the MEILB2-binding domain within BRCA2 that is distinct from the canonical DNA-binding domain but is sufficient to localize to meiotic DSBs in a MEILB2-dependent manner. We conclude that localization of BRCA2 to meiotic DSBs is mediated by MEILB2, which is an integral mechanism to repair abundant meiotic DSBs.
  •  
10.
  • Zhang, Jingjing, 1986, et al. (författare)
  • BRCA2 in mammalian meiosis.
  • 2021
  • Ingår i: Trends in cell biology. - : Elsevier BV. - 1879-3088 .- 0962-8924. ; 32:4, s. 281-284
  • Forskningsöversikt (refereegranskat)abstract
    • Breast cancer type 2 susceptibility protein (BRCA2) is a central regulator of homologous recombination in somatic cells and safeguards genomic integrity against DNA double-strand breaks (DSBs). Recent evidence suggests that association with unique meiosis-specific cofactors allows BRCA2 to facilitate homologous recombination in germ cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy