SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Peili) "

Sökning: WFRF:(Zhang Peili)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fan, Lizhou, et al. (författare)
  • 3D Core-Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation : Synergy between Structural and Electronic Modulation
  • 2018
  • Ingår i: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 3:12, s. 2865-2874
  • Tidskriftsartikel (refereegranskat)abstract
    • Low cost transition metal-based electrocatalysts for water oxidation and understanding their structure-activity relationship are greatly desired for clean and sustainable chemical fuel production. Herein, a core-shell (CS) NiFeCr metal/metal hydroxide catalyst was fabricated on a 3D Cu nanoarray by a simple electrodeposition-activation method. A synergistic promotion effect between electronic structure modulation and nanostructure regulation was presented on a CS-NiFeCr oxygen evolution reaction (OER) catalyst: the 3D nanoarchitecture facilitates the mass transport process, the in situ formed interface metal/metal hydroxide heterojunction accelerates the electron transfer, and the electronic structure modulation by Cr incorporation improves the reaction kinetics. Benefiting from the synergy between structural and electronic modulation, the catalyst shows excellent activity toward water oxidation under alkaline conditions: overpotential of 200 mV at 10 mA/cm(2) current density and Tafel slope of 28 mV/dec. This work opens up a new window for understanding the structure-activity relationship of OER catalysts and encourages new strategies for development of more advanced OER catalysts.
  •  
2.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
3.
  •  
4.
  • Daniel, Quentin, et al. (författare)
  • Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst
  • 2018
  • Ingår i: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435. ; 8:5, s. 4375-4382
  • Tidskriftsartikel (refereegranskat)abstract
    • The mononuclear ruthenium complex [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid, L = N-heterocycles such as 4-picoline) has previously shown promising catalytic efficiency toward water oxidation, both in homogeneous solutions and anchored on electrode surfaces. However, the detailed water oxidation mechanism catalyzed by this type of complex has remained unclear. In order to deepen understanding of this type of catalyst, in the present study, [Ru(pdc)(py)(3)] (py = pyridine) has been synthesized, and the detailed catalytic mechanism has been studied by electrochemistry, UV-vis, NMR, MS, and X-ray crystallography. Interestingly, it was found that once having reached the Ru-IV state, this complex promptly formed a stable ruthenium dimer [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(2)](+). Further investigations suggested that the present dimer, after one pyridine ligand exchange with water to form [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(H2O)](+), was the true active species to catalyze water oxidation in homogeneous solutions.
  •  
5.
  • Zhang, Biaobiao, et al. (författare)
  • Defective and "c-Disordered" Hortensia-like Layered MnOx as an Efficient Electrocatalyst for Water Oxidation at Neutral pH
  • 2017
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 7:9, s. 6311-6322
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of a highly active manganese-based water oxidation catalyst in the design of an ideal artificial photosynthetic device operating under neutral pH conditions remains a great challenge, due to the instability of pivotal Mn3+ intermediates. We report here defective and "c-disordered" layered manganese oxides (MnOx-300) formed on a fluorine-doped tin oxide electrode by constant anodic potential deposition and subsequent annealing, with a catalytic onset (0.25 mA/cm(2)) at an overpotential (eta) of 280 mV and a benchmark catalytic current density of 1.0 mA/cm(2) at an overpotential (eta) of 330 mV under neutral pH (1 M potassium phosphate). Steady current density above 8.2 mA/cm(2) was obtained during the electrolysis at 1.4 V versus the normal hydrogen electrode for 20 h. Insightful studies showed that the main contributing factors for the observed high activity of MnOx-300 are (i) a defective and randomly stacked layered structure, (ii) an increased degree of Jahn-Teller distorted Mn3+ in the MnO6 octahedral sheets, (iii) effective stabilization of Mn3+, (iv) a high surface area, and (v) improved electrical conductivity. These results demonstrate that manganese oxides as structural and functional models of an oxygen-evolving complex (OEC) in photosystem II are promising catalysts for water oxidation in addition to Ni/Co-based oxides/hydroxides.
  •  
6.
  • Zhang, Biaobiao, et al. (författare)
  • Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic Δ-MnOx on Carbon Nanotubes
  • 2017
  • Ingår i: ChemSusChem. - : Wiley-VCH Verlag. - 1864-5631 .- 1864-564X. ; 10:22, s. 4472-4478
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx/CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx/CNT/NF electrode gives a benchmark catalytic current density (10 mA cm−2) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm−2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.
  •  
7.
  • Zhang, Peili, et al. (författare)
  • Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.
  •  
8.
  • Zhang, Peili, et al. (författare)
  • Gas-templating of hierarchically structured Ni-Co-P for efficient electrocatalytic hydrogen evolution
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 5:16, s. 7564-7570
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the grand challenges for developing scalable and sustainable hydrogen producing systems is the lack of efficient and robust earth-abundant element based catalysts for the hydrogen evolution reaction (HER). Herein, a hierarchically structured Ni-Co-P film was fabricated via a gas templating electro-deposition method. This film exhibits remarkably high catalytic performance for the HER in 1 M KOH with respective current densities of -10 and -500 mA cm(-2) at the overpotentials of -30 and -185 mV with a Tafel slope of 41 mV dec(-1). A controlled potential electrolysis experiment demonstrates that the as-prepared Ni-Co-P film is an efficient and robust catalyst with a faradaic efficiency close to 100%. Systematic characterization suggests that the unique hierarchical structure and the mutual participation of nano-sized Ni/Co based components are responsible for the high HER catalytic activity.
  •  
9.
  • Zhang, Peili, et al. (författare)
  • Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source
  • 2019
  • Ingår i: Angewandte Chemie International Edition. - : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 58:27, s. 9155-9159
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of water as an oxygen and hydrogen source for the paired oxygenation and hydrogenation of organic substrates to produce valuable chemicals is of utmost importance as a means of establishing green chemical syntheses. Inspired by the active Ni3+ intermediates involved in electro-catalytic water oxidation by nickel-based materials, we prepared NiBx as a catalyst and used water as the oxygen source for the oxygenation of various organic compounds. NiBx was further employed as both an anode and a cathode in a paired electrosynthesis cell for the respective oxygenation and hydrogenation of organic compounds, with water as both the oxygen and hydrogen source. Conversion efficiency and selectivity of >= 99% were observed during the oxygenation of 5-hydroxy-methylfurfural to 2,5-furandicarboxylic acid and the simultaneous hydrogenation of p-nitrophenol to p-aminophenol. This paired electrosynthesis cell has also been coupled to a solar cell as a stand-alone reactor in response to sunlight.
  •  
10.
  • Chen, Lin, et al. (författare)
  • A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential
  • 2014
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 7:1, s. 329-334
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembled molecular iron and cobalt catalysts (MP4N2, M = Fe, Co) bearing a multihydroxy-functionalized tetraphosphine ligand electrocatalyze H-2 generation from neutral water on a mercury electrode at -1.03 and -0.50 V vs. NHE, respectively. Complex CoP4N2 displays extremely low overpotential (E-onset = 80 mV) while maintaining high activity and good stability. Bulk electrolysis of CoP4N2 in a neutral phosphate buffer solution at -1.0 V vs. NHE produced 9.24 x 10(4) mol H-2 per mol cat. over 20 h, with a Faradaic efficiency close to 100% and without apparent deactivation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy