SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Pimin 1990 ) "

Sökning: WFRF:(Zhang Pimin 1990 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonnalagadda, Krishna Praveen, 1988-, et al. (författare)
  • Failure of Multilayer Suspension Plasma Sprayed Thermal Barrier Coatings in the Presence of Na2SO4 and NaCl at 900 °C
  • 2019
  • Ingår i: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 28:1-2, s. 212-222
  • Tidskriftsartikel (refereegranskat)abstract
    • The current investigation focuses on understanding the influence of a columnar microstructure and a sealing layer on the corrosion behavior of suspension plasma sprayed thermal barrier coatings (TBCs). Two different TBC systems were studied in this work. First is a double layer made of a composite of gadolinium zirconate + yttria stabilized zirconia (YSZ) deposited on top of YSZ. Second is a triple layer made of dense gadolinium zirconate deposited on top of gadolinium zirconate + YSZ over YSZ. Cyclic corrosion tests were conducted between 25 and 900 °C with an exposure time of 8 h at 900 °C. 75 wt.% Na2SO4 + 25 wt.% NaCl were used as the corrosive salts at a concentration of 6 mg/cm2. Scanning electron microscopy analysis of the samples’ cross sections showed that severe bond coat degradation had taken place for both the TBC systems, and the extent of bond coat degradation was relatively higher in the triple-layer system. It is believed that the sealing layer in the triple-layer system reduced the number of infiltration channels for the molten salts which resulted in overflowing of the salts to the sample edges and caused damage to develop relatively more from the edge.
  •  
2.
  • Jonnalagadda, Krishna Praveen, 1988-, et al. (författare)
  • Hot gas corrosion and its influence on the thermal cycling performance of suspension plasma spray TBCs
  • 2019
  • Ingår i: Proceedings of ASME Turbo Expo 2019. - New York, NY : American Society of Mechanical Engineers. - 9780791858677
  • Konferensbidrag (refereegranskat)abstract
    • Thermal barrier coatings (TBCs) manufactured with suspension plasma spray (SPS) are promising candidates for use in gas turbines due to their high strain tolerance during thermal cyclic fatigue (TCF). However, corrosion often occurs alongside thermal fatigue and coating durability under these conditions is highly desirable. The current study focuses on understanding the corrosion behavior and its influence on the thermal cyclic fatigue life of SPS TBCs. Corrosion tests were conducted at 780 OC using a mixed-gas (1SO2-0.1CO-20CO2-N2(bal.) in vol. %) for 168h. They were later thermally cycled between 100-1100 ⁰C with a 1h hold time at 1100 ⁰C. Corrosion test results indicated that the damage predominantly started from the edges and a milder damage was observed at the center. Nickel sulfide was observed on top of the top coat and also in the columnar gaps of the top coat. Chromium oxides were observed inside the top coat columnar gaps but close to the bond coat/top coat interface. They were believed to reduce the strain tolerance of SPS TBCs to an extent and also amplify the thermal mismatch stresses during TCF tests. This, together with a fast growth of alumina during the TCF, resulted in a significant drop in the TCF life compared to the standard TCF tests.
  •  
3.
  • Zhang, Pimin, 1990-, et al. (författare)
  • Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings
  • 2019
  • Ingår i: Surface & Coatings Technology. - Elsevier : Elsevier BV. - 0257-8972 .- 1879-3347. ; 364, s. 43-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxide scale formed on HVAF-sprayed NiCoCrAlY coatings and the effect of surface treatment were investigated by a multi-approach study combining photo-stimulated luminescence, microstructural observation and mass gain. The initial oxidationbehaviour of as-sprayed, polished and shot-peened coatings at 1000 °C is studied. Both polished and shot-peened coatings exhibited superior performance due to rapid formation of α-Al2O3 fully covering the coating and suppressing the growth of transient alumina, assisted by a high density of α-Al2O3 nuclei on surface treatment induced defects. Moreover, the fast development of a two-layer alumina scale consisting of an inward-grown inner α-Al2O3 layer and an outer layer transformed from outward-grown transient alumina resulted in a higher oxide growth rate of the as-sprayed coating.
  •  
4.
  • Zhang, Pimin, 1990-, et al. (författare)
  • Failure Mechanism of MCrAlY Coating at the Coating-Substrate Interface under Type I Hot Corrosion
  • 2019
  • Ingår i: Materials and corrosion - Werkstoffe und Korrosion. - : Wiley-VCH Verlagsgesellschaft. - 0947-5117 .- 1521-4176. ; 70:9, s. 1593-1600
  • Tidskriftsartikel (refereegranskat)abstract
    • MCrAlY coatings are widely used to provide protection of hot component in modern gas turbine engines against high‐temperature oxidation and hot corrosion. Coating‐substrate interface, where the substrate is only partially covered by the coatings, is vulnerable to the hot corrosion attack. The accelerated degradation at the coating‐substrate interface can cause fast spallation of the coating, leading to the early failure of the gas turbine components. In this paper, MCrAlY powder was deposited on IN792 disks by high‐velocity oxygen‐fuel spraying. The hot corrosion behavior of the coated sample was investigated using (0.8Na, 0.2K)2SO 4 salt deposition at 900°C in lab air. Results showed a minor attack in the coating center, however, an accelerated corrosion attack at the coating‐substrate interface. The fast growth of corrosion products from substrate caused large local volume expansions at the coating‐substrate interface, resulting in an early coating spallation.
  •  
5.
  • Zhang, Pimin, 1990-, et al. (författare)
  • Investigation of Element Effect on High-Temperature Oxidation of HVOF NiCoCrAlX Coatings
  • 2018
  • Ingår i: Coatings. - : M D P I AG. - 2079-6412. ; 8:4, s. 129-145
  • Tidskriftsartikel (refereegranskat)abstract
    • MCrAlX (M: Ni or Co or both, X: minor elements) coatings have been used widely to protect hot components in gas turbines against oxidation and heat corrosion at high temperatures. Understanding the influence of the X-elements on oxidation behavior is important in the design of durable MCrAlX coatings. In this study, NiCoCrAlX coatings doped with Y + Ru and Ce, respectively, were deposited on an Inconel-792 substrate using high velocity oxygen fuel (HVOF). The samples were subjected to isothermal oxidation tests in laboratory air at 900, 1000, and 1100 °C and a cyclic oxidation test between 100 and 1100 °C with a 1-h dwell time at 1100 °C. It was observed that the coating with Ce showed a much higher oxidation rate than the coating with Y + Ru under both isothermal and cyclic oxidation tests. In addition, the Y + Ru-doped coating showed significantly lower β phase depletion due to interdiffusion between the coating and the substrate, resulting from the addition of Ru. Simulation results using a moving phase boundary model and an established oxidation-diffusion model showed that Ru stabilized β grains, which reduced β-depletion of the coating due to substrate interdiffusion. This paper, combining experiment and simulation results, presents a comprehensive study of the influence of Ce and Ru on oxidation behavior, including an investigation of the microstructure evolution in the coating surface and the coating-substrate interface influenced by oxidation time.
  •  
6.
  • Zhang, Pimin, 1990-, et al. (författare)
  • Isothermal oxidation behavior of HVAF-sprayed NiCoCrAlY coatings : Effect of surface treatment
  • 2017
  • Ingår i: Proceedings of the International Thermal Spray Conference & Exposition (ITSC 2017). - New York : Curran Associates, Inc. - 9781510858220 ; , s. 456-461
  • Konferensbidrag (refereegranskat)abstract
    • NiCoCrAlY coatings are widely used as bond coats for ceramic thermal barrier coatings (TBCs) andoxidation and corrosion protective overlay coatings in industrial gas turbines. High temperature oxidation behaviour of NiCoCrAlYs has a great influence on the coating performance and lifetime of TBCs. A promising route to decrease the oxidation rate of such coatings is post-coating surface modification which can facilitate formation of a uniform alumina scale with a considerably slower growth rate compared to the as-sprayed coatings. In this work, the effect of surface treatment by means of shot peening and laser surface melting (LSM) on the oxidation resistance of high velocity air-fuel (HVAF) sprayed NiCoCrAlY coatings was studied. Isothermal oxidation was carried out at 1000⁰C for 1000h. Results showed that the rough surface of as-sprayed HVAF sprayed coatings was significantly changed after shot peening and LSM treatment, with a compact and smooth appearance. After the exposure, the oxide scales formed on surface-treated NiCoCrAlY coatings showed different morphology and growth rate compared to those formed on as-sprayed coating surface. The oxidation behaviour of surface treated HVAF-sprayed NiCoCrAlY coatings were revealed and discussed.
  •  
7.
  • Zhang, Pimin, 1990- (författare)
  • Oxidation behaviour of MCrAlX coatings : effect of surface treatment and an Al-activity based life criterion
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • MCrAlY coatings (M=Ni and/or Co) have been widely used for the protection of superalloy components against oxidation and hot corrosion in the hot sections of gas turbines. The drive to improve engine combustion efficiency while reducing emissions by increasing the operation temperature brings a big challenge for coating design. As a result, the need for improvement of MCrAlY coatings for better oxidation resistance is essential.Formation of a stable, dense, continuous, and slow-growing α-Al2O3 layer, on the MCrAlY coating surface, is the key to oxidation protection, since the protective α-Al2O3 scale offers superior oxidation resistance due to its lower oxygen-diffusion rate as compared with other oxides. The ability of a MCrAlY coating to form and maintain such a protective scale depends on the coating composition and microstructure, and can be improved through optimization of deposition parameters, modification of coating surface conditions, and so on. Part of this thesis work focuses on studying the effect of post-deposition surface treatments on the oxidation behavior of MCrAlX coatings (X can be yttrium and/or other minor alloying elements). The aim is to gain fundamental understanding of alumina scale evolution during oxidation which is important for achieving improved oxidation resistance of MCrAlX coatings. Oxide scale formed on coatings at initial oxidation stage and the effect of surface treatment were investigated by a multi-approach study combining photo-stimulated luminescence, microstructural observation and weight gain. Results showed that both mechanically polished and shot-peened coatings exhibited superior performance due to rapid formation of α-Al2O3 fully covering the coating and suppressing growth of transient alumina, assisted by the high density of α-Al2O3 nuclei on surface treatment induced defects. The early development of a two-layer alumina scale, consisting of an inward-grown inner α-Al2O3 layer and an outer layer transformed from outward-grown transient alumina, resulted in a higher oxide growth rate of the as-sprayed coating. The positive effect of the surface treatments on retarding oxide scale growth and suppressing formation of spinel was also observed in oxidation test up to 1000 hrs.As the oxidation proceeds to the close-to-end stage, a reliable criterion to estimate the capability of coating to form α-Al2O3 is of great importance to accurately evaluate coating lifetime, which is the aim of the other part of the thesis work. Survey of published results on a number of binary Ni-Al and ternary Ni-Cr-Al, Ni-Al-Si systems shows that the empirical Al-concentration based criterion is inadequate to properly predict the formation of a continuous α-Al2O3 scale. On the other hand, correlating the corresponding Al-activity data, calculated from measured chemical compositions using the Thermo-Calc software, to the experimental oxidation results has revealed a temperature dependent, critical Al-activity value for forming continuous α-Al2O3 scale. To validate the criterion, long-term oxidation tests were performed on five MCrAlX coatings with varying compositions and the implementation of the Al-activity based criterion on these coatings successfully predicted α-Al2O3 formation, showing a good agreement with experiment results.
  •  
8.
  • Zhang, Pimin, 1990- (författare)
  • Performance of MCrAlX coatings : Oxidation, Hot corrosion and Interdiffusion
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • MCrAlY coatings (M=Ni and/or Co) are widely used for the protection of superalloy components against oxidation and hot corrosion in the hot sections of gas turbines. The drive for coating systems to bestow adequate oxidation and corrosion resistance upon the components becomes urgent as an inevitable result of the necessary improvement in engine combustion efficiency and service lifetime. Through the careful design of the composition, MCrAlY coating performance can be optimized to meet the needs under different service conditions and component materials, therefore, “MCrAlX”, with “X” stands for the minor alloying elements, is used to highlight the effect. In the present thesis, the performance of new MCrAlX coatings is investigated with respect to oxidation, hot corrosion and interactions between coating-superalloy substrates.Oxidation of MCrAlX coatings can be generally categorized into initial, steady and close-to-end stages. Coating performance can be affected by various factors at different stages, therefore, experiments were designed by targeting the oxidation stages. Investigation on the initial stage oxidation behavior of MCrAlY coatings with post-deposition surface treatments reveals the different growth mechanisms of alumina scales. Surface treatments significantly reduce the alumina growth rate by suppressing transient alumina development and aiding the early formation of α-Al2O3, which improves the long-term oxidation performance of the coating. Similarly, the modification of minor alloy elements in MCrAlX coatings also serves the purpose. The oxidation behavior of new MCrAlX coatings was investigated at the steady oxidation stage, followed by the microstructure observation, thermodynamic and kinetic simulations. As an alternative reactive element addition of Y, Ce shows a negative effect on the formation of columnar alumina scales of high strain tolerance. In comparison, Fe or Ru addition shows no influence on alumina growth, rather than strengthening the phase stability in the coating and reducing the interdiffusion between coating-substrate through different mechanisms. As the oxidation proceeds to the close-to-end stage, a reliable criterion to estimate the capability of coating to form α-Al2O3 is of great importance to accurately evaluate coating lifetime. A temperature-dependent critical Al-activity criterion was proposed to better predict the formation of a continuous α-Al2O3 scale based on correction of elemental activity using thermodynamic database to replace the empirical Al-concentration based criterion.Severe interdiffusion occurs between coating-substrate during high temperature oxidation, accelerating the degradation of the system. Interdiffusion behavior of diffusion couples of superalloys-MCrAlX coatings were examined. It is highlighted that the recrystallization of superficial layer of the substrate contributes to the secondary reaction zone formation and element interdiffusion controls subsequent zone thickening.Study on Type I hot corrosion behavior of new MCrAlX coatings shows that the addition of Fe has no influence on basic fluxing reactions before severe Al depletion from the coating occurs. Instead, it boosts the “effective” Al supply of coating by shifting the equilibrium concentration of Al in the γ phase to a low Al level. Besides, the pre-mature coating degradation at the coating-substrate interface was due to the fast growth of corrosion products from substrate induced large local volume expansions, resulting in early coating spallation.
  •  
9.
  • Zhang, Pimin, 1990-, et al. (författare)
  • The iron effect on hot corrosion behaviour of MCrAlX coating in the presence of NaCl at 900 °C
  • 2020
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 815
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclic hot corrosion tests of two MCrAlX coatings with different Fe contents were carried out in a molten salt (75 wt% Na2SO4 + 25 wt% NaCl) environment at 900 °C under type I hot corrosion. The positive effect of high Fe addition which reduces the advancing of corrosion front in the coating was discussed. The experimental results showed that the main corrosion reaction is the basic fluxing of Al, while Fe is relatively inert. Combined with thermodynamic modelling, it was demonstrated that a high Fe addition in MCrAlX coatings shifts the equilibrium Al content of the γ phase towards a low level and also reduces the loss of Cr from coating to the substrate. Both effects contributed to a higher “effective” Al supply of the coating to resist basic fluxing and thereby enhance the coating resistance to hot corrosion by reducing the rate of advancing of the corrosion front.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy