SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Qi 1995 ) "

Sökning: WFRF:(Zhang Qi 1995 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vyas, Agin, 1992, et al. (författare)
  • Spin-Coated Heterogenous Stacked Electrodes for Performance Enhancement in CMOS-Compatible On-Chip Microsupercapacitors
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:4, s. 4221-4231
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of microsupercapacitors (MSCs) with on-chip sensors and actuators with nanoenergy harvesters can improve the lifetime of wireless sensor nodes in an Internet-of-Things (IoT) architecture. However, to be easy to integrate with such harvester technology, MSCs should be fabricated through a complementary-metal-oxide-semiconductor (CMOS) compatible technology, ubiquitous in electrode choice with the capability of heterogeneous stacking of electrodes for modulation in properties driven by application requirements. In this article, we address both these issues through fabrication of multielectrode modular, high energy density microsupercapacitors (MSC) containing reduced graphene oxide (GO), GO-heptadecane-9-amine (GO-HD9A), rGO-octadecylamine (rGO-ODA), and rGO-heptadecane-9-amine (rGO-HD9A) that stack through a scalable, CMOS compatible, high-wafer-yield spin-coating process. Furthermore, we compare the performance of the stack with individual electrode MSCs fabricated through the same process. The individual electrodes, in the presence of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide (EMIM-TFSI), demonstrate a capacitance of 38, 30, 36, and 105 μF/cm^2 at 20 mV/s^1 whereas the fabricated stack of electrodes demonstrates a high capacitance of 280 μF/cm^2 at 20 mV/s^1 while retaining and enhancing the material-dependent capacitance, charge retention, and power density.
  •  
2.
  • Zhang, Qi, 1995- (författare)
  • Ion escape from Mars
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • When the solar wind reaches the Mars obstacle, mass loading by planetary ions slows down the solar wind and raises the bow shock. The Martian atmosphere is undergoing the a scavenging by the solar wind without the protection of a global magnetic field. Atmospheric escape is an important process for the evolution of the Martian climate. For present Mars, the dominant escape of atmospheric neutrals is through four channels: Jeans escape, photochemical reactions, sputtering and electron impact ionization. Ions above the exobase get accelerated by the solar wind electric field and can escape.We here apply a new method for estimating heavy ion (O+, O+2, and CO+2) escape rates at Mars, which combines a hybrid model and observations. We use observed upstream solar wind parameters as input for a hybrid plasma model, where the total ion upflux at the exobase is a free parameter. We then vary this ion upflux to find the best fit to the observed bow shock location. This method gives us a self-consistent description of the Mars-solar wind interaction, which can be used to study other properties of the solar wind interaction besides escape.
  •  
3.
  • Zhang, Qi, 1995-, et al. (författare)
  • The influence of solar irradiation and solar wind conditions on heavy ion escape from Mars
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a recently proposed method to estimate heavy ion escape from Mars. The method combines in situ observations with a hybrid plasma model, which treats ions as particles and electrons as a fluid. With this method, we investigate how solar upstream conditions, including solar extreme ultraviolet (EUV) radiation, solar wind dynamic pressure, and interplanetary magnetic field (IMF) strength and cone angle, affect the heavy ion loss. The results indicate that the heavy ion escape rate is greater in high EUV conditions. The escape rate increases with increasing solar wind dynamic pressure, and decreases as the IMF strength increases. The ion escape rate is highest when the solar wind is parallel to the IMF and lowest when they are perpendicular. The plume escape rate decreases when the solar wind convective electric field increases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy