SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Shujuan) "

Sökning: WFRF:(Zhang Shujuan)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hao, Wende, et al. (författare)
  • Vitronectin : a promising breast cancer serum biomarker for early diagnosis of breast cancer in patients
  • 2016
  • Ingår i: Tumor Biology. - : Springer. - 1010-4283 .- 1423-0380. ; 37:7, s. 8909-8916
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is the most common cancer in women worldwide, identification of new biomarkers for early diagnosis and detection will improve the clinical outcome of breast cancer patients. In the present study, we determined serum levels of vitronectin (VN) in 93 breast cancer patients, 30 benign breast lesions, 9 precancerous lesions, and 30 healthy individuals by enzyme-linked immunosorbent assays. Serum VN level was significantly higher in patients with stage 0-I primary breast cancer than in healthy individuals, patients with benign breast lesion or precancerous lesions, as well as those with breast cancer of higher stages. Serum VN level was significantly and negatively correlated with tumor size, lymph node status, and clinical stage (p < 0.05 in all cases). In addition, VN displayed higher area under curve (AUC) value (0.73, 95 % confidence interval (CI) [0.62-0.84]) than carcinoembryonic antigen (CEA) (0.64, 95 % CI [0.52-0.77]) and cancer antigen 15-3 (CA 15-3) (0.69, 95 % CI [0.58-0.81]) when used to distinguish stage 0-I cancer and normal control. Importantly, the combined use of three biomarkers yielded an improvement in receiver operating characteristic curve with an AUC of 0.83, 95 % CI [0.74-0.92]. Taken together, our current study showed for the first time that serum VN is a promising biomarker for early diagnosis of breast cancer when combined with CEA and CA15-3.
  •  
2.
  • Wang, Tianhao, et al. (författare)
  • Regenerated Bamboo-Derived Cellulose Fibers/RGO-Based Composite for High-Performance Supercapacitor Electrodes
  • 2020
  • Ingår i: 7th annual international conference on material science and environmental engineering. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Bamboo-derived cellulose fibers/RGO carbon aerogel composite was prepared by using a facile aerogel-based method, in which bamboo pulp fibers were dissolved and incorporated in an ionic liquid system, and RGO was introduced by thermal reduction approach. The obtained bamboo-derived cellulose fibers/RGO carbon aerogel composite shows a large specific surface area, and excellent electrochemical performance. When the GO content was 2.5 wt%, the obtained composite showed a high specific surface area of 1957 m(2)/g, and high specific capacitance of 351 F/g in 6 M KOH electrolyte solution even with a more than 90% capacitance retention at a high scan rate of 200 mV/s. The bamboo-derived cellulose fibers/RGO composite electrodes show the low equivalent series resistance of 5.0 Omega and small charge transfer resistance of 0.30 Omega which further demonstrate the excellent electrochemical behaviors.
  •  
3.
  • Teh, Zhi Li, et al. (författare)
  • Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:20, s. 22751-22759
  • Tidskriftsartikel (refereegranskat)abstract
    • PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n+–n–p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT naturally limits the device thickness as the carrier diffusion length is limited by the low mobility. Herein, we improve the properties of the p-type layer through a two-step hybrid organic ligand treatment. By treating the p-type layer with two types of ligands, 3-mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a combination of the two ligands, resulting in an overall improvement in open-circuit voltage, fill factor, and current density, leading to an improvement in the cell efficiency from 7.0 to 10.4% for the champion device. This achievement was a result of the improved QD passivation and a reduction in the interdot distance, improving charge transport through the p-type PbS quantum dot film.
  •  
4.
  • Yang, Shujuan, et al. (författare)
  • Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils
  • 2020
  • Ingår i: International Journal of Biological Macromolecules. - : ELSEVIER. - 0141-8130 .- 1879-0003. ; 151, s. 159-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose acetate (CA) ultrafiltration membranes are attracting more attention in wastewater purification due to its biodegradability and eco-friendly. The application of CA membranes, however, is limited by high susceptibility to bacterial corrosion and lack of mechanical tolerance that results in loss of life. To solve the above problems, we first fabricated the CA-based composite membranes incorporated with bamboo-based lignocellulose nanofibrils (LCNFs) by a strategy of phase inversion. LCNFs was prepared by using a combined method of one-step chemical pretreatment and add hydrolysis coupled with high-pressure homogenization. The as-prepared CA/LCNFs composite membranes with 4 wt% lignin in the LCNFs exhibited high tensile strength of 7.08 MPa and strain-at-break of 12.21%, and high filtration permeability of 188.23 L. m(-2).h(-1) as ultrafiltration membranes for wastewater treatment, which could obviously inhibit the growth of Escherichia Coli.
  •  
5.
  • Yilimulati, Mihebai, et al. (författare)
  • Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:13, s. 9683-9692
  • Tidskriftsartikel (refereegranskat)abstract
    • The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.
  •  
6.
  • Yilimulati, Mihebai, et al. (författare)
  • Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:20, s. 14173-14184
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest β-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy