SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Xingqi) "

Sökning: WFRF:(Zhang Xingqi)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhu, Zhenshuo, et al. (författare)
  • Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network
  • 2021
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The pluripotency gene regulatory network of porcine induced pluripotent stem cells(piPSCs), especially in epigenetics, remains elusive. To determine the biological function of epigenetics, we cultured piPSCs in different culture conditions. We found that activation of pluripotent gene- and pluripotency-related pathways requires the erasure of H3K9 methylation modification which was further influenced by mouse embryonic fibroblast (MEF) served feeder. By dissecting the dynamic change of H3K9 methylation during loss of pluripotency, we demonstrated that the H3K9 demethylases KDM3A and KDM3B regulated global H3K9me2/me3 level and that their co-depletion led to the collapse of the pluripotency gene regulatory network. Immunoprecipitation-mass spectrometry (IP-MS) provided evidence that KDM3A and KDM3B formed a complex to perform H3K9 demethylation. The genome-wide regulation analysis revealed that OCT4 (O) and SOX2 (S), the core pluripotency transcriptional activators, maintained the pluripotent state of piPSCs depending on the H3K9 hypomethylation. Further investigation revealed that O/S cooperating with histone demethylase complex containing KDM3A and KDM3B promoted pluripotency genes expression to maintain the pluripotent state of piPSCs. Together, these data offer a unique insight into the epigenetic pluripotency network of piPSCs.
  •  
2.
  • Zhang, Juqing, et al. (författare)
  • Super-enhancers conserved within placental mammals maintain stem cell pluripotency
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolu-tion in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in pla-cental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of plu-ripotency as well as species-specific modulation of the pluripotency-associated regula-tory networks in mammals.
  •  
3.
  • Bian, Guodong, et al. (författare)
  • Detection and attribution of flood responses to precipitation change and urbanization : A case study in Qinhuai River Basin, Southeast China
  • 2020
  • Ingår i: Hydrology Research. - : IWA Publishing. - 1998-9563 .- 0029-1277 .- 2224-7955. ; 51:2, s. 351-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Both flood magnitude and frequency might change under the changing environment. In this study, a procedure combining statistical methods, flood frequency analysis and attribution analysis was proposed to investigate the response of floods to urbanization and precipitation change in the Qinhuai River Basin, an urbanized basin located in Southeast China, over the period from 1986 to 2013. The Mann–Kendall test was employed to detect the gradual trend of the annual maximum streamflow and the peaks over threshold series. The frequency analysis was applied to estimate the changes in the magnitude and frequency of floods between the baseline period (1986–2001) and urbanization period (2002–2013). An attribution analysis was proposed to separate the effects of precipitation change and urbanization on flood sizes between the two periods. Results showed that: (1) there are significant increasing trends in medium and small flood series according to the Mann–Kendall test; (2) the mean and threshold values of flood series in the urbanization period were larger than those in the baseline period, while the standard deviation, coefficient of variation and coefficient of skewness of flood series were both higher during the baseline period than those during the urbanization period; (3) the flood magnitude was higher during the urbanization period than that during the baseline period at the same return period. The relative changes in magnitude were larger for small floods than for big floods from the baseline period to the urbanization period; (4) the contributions of urbanization on floods appeared to amplify with the decreasing return period, while the effects of precipitation diminish. The procedure presented in this study could be useful to detect the changes of floods in the changing environment and conduct the attribution analysis of flood series. The findings of this study are beneficial to further understanding interactions between flood behavior and the drivers, thereby improving flood management in urbanized basins.
  •  
4.
  • Du, Qian, et al. (författare)
  • Porcine circovirus type 2 infection promotes the SUMOylation of nucleophosmin-1 to facilitate the viral circular single-stranded DNA replication
  • 2024
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 20:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication. Different types of DNA viruses employ different mechanisms to replicate their genome DNA. Porcine circovirus type 2 (PCV2) is the most representative circular single-stranded DNA virus that harms the pig industry all over the world. In this study, we found that the PCV2 Cap interacting protein pNPM1 also interacts with PCV2 DNA in a SUMOylated form to promote PCV2 DNA replication. The SUMOylation of pNPM1 at the conserved K263 site is critical for the interaction of pNPM1 with PCV2 DNA and the replication of PCV2 DNA. Furthermore, we found that PCV2 infection promotes the SUMO2/3 mediated SUMOylation of pNPM1, while does not significantly alter the expression level of pNPM1. PCV2 Cap is the major component that promotes pNPM1 SUMOylation by activating ERK/Ubc9/TRIM24 signalings. These results contribute to a better understanding of the replication mechanism of circular single-stranded DNA viruses, particularly PCV2.
  •  
5.
  • Li, Dongqing, et al. (författare)
  • Single-Cell Analysis Reveals Major Histocompatibility Complex II-Expressing Keratinocytes in Pressure Ulcers with Worse Healing Outcomes
  • 2022
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier. - 0022-202X .- 1523-1747. ; 142:3, s. 705-716
  • Tidskriftsartikel (refereegranskat)abstract
    • Pressure ulcer (PU) is a chronic wound often seen in patients with spinal cord injury and other bed-bound individuals, particularly in the elderly population. Despite its association with high mortality, the pathophysiology of PU remains poorly understood. In this study, we compared single-cell transcriptomic profiles of human epidermal cells from PU wound edges with those from uninjured skin and acute wounds in healthy donors. We identified significant shifts in the cell composition and gene expression patterns in PU. In particular, we found that major histocompatibility complex class II-expressing keratinocytes were enriched in patients with worse healing outcomes. Furthermore, we showed that the IFN-gamma in PU-derived wound fluid could induce major histocompatibility complex II expression in keratinocytes and that these wound fluid-treated keratinocytes inhibited autologous T-cell activation. In line with this observation, we found that T cells from PUs enriched with major histocompatibility complex II+ keratinocytes produced fewer inflammatory cytokines. Overall, our study provides a high-resolution molecular map of human PU compared with that of acute wounds and intact skin, providing insights into PU pathology and the future development of tailored wound therapy.
  •  
6.
  • Li, Honglian, et al. (författare)
  • Heparanase Modulates Chromatin Accessibility
  • 2023
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparanase is the sole endoglucuronidase that degrades heparan sulfate in the cell surface and extracellular matrix (ECM). Several studies have reported the localization of heparanase in the cell nucleus, but the functional role of the nuclear enzyme is still obscure. Subjecting mouse embryonic fibroblasts (MEFs) derived from heparanase knockout (Hpse-KO) mice and applying transposase-accessible chromatin with sequencing (ATAC-seq), we revealed that heparanase is involved in the regulation of chromatin accessibility. Integrating with genome-wide analysis of chromatin states revealed an overall low activity in the enhancer and promoter regions of Hpse-KO MEFs compared with wild-type (WT) MEFs. Western blot analysis of MEFs and tissues derived from Hpse-KO vs. WT mice confirmed reduced expression of H3K27ac (acetylated lysine at N-terminal position 27 of the histone H3 protein). Our results offer a mechanistic explanation for the well-documented attenuation of inflammatory responses and tumor growth in Hpse-KO mice.
  •  
7.
  • Lu, Xi, et al. (författare)
  • Identification of ATF3 as a novel protective signature of quiescent colorectal tumor cells
  • 2023
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death in the world. In most cases, drug resistance and tumor recurrence are ultimately inevitable. One obstacle is the presence of chemotherapy-insensitive quiescent cancer cells (QCCs). Identification of unique features of QCCs may facilitate the development of new targeted therapeutic strategies to eliminate tumor cells and thereby delay tumor recurrence. Here, using single-cell RNA sequencing, we classified proliferating and quiescent cancer cell populations in the human colorectal cancer spheroid model and identified ATF3 as a novel signature of QCCs that could support cells living in a metabolically restricted microenvironment. RNA velocity further showed a shift from the QCC group to the PCC group indicating the regenerative capacity of the QCCs. Our further results of epigenetic analysis, STING analysis, and evaluation of TCGA COAD datasets build a conclusion that ATF3 can interact with DDIT4 and TRIB3 at the transcriptional level. In addition, decreasing the expression level of ATF3 could enhance the efficacy of 5-FU on CRC MCTS models. In conclusion, ATF3 was identified as a novel marker of QCCs, and combining conventional drugs targeting PCCs with an option to target QCCs by reducing ATF3 expression levels may be a promising strategy for more efficient removal of tumor cells.
  •  
8.
  • Wu, Sihan, et al. (författare)
  • Circular ecDNA promotes accessible chromatin and high oncogene expression
  • 2019
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7784, s. 699-703
  • Tidskriftsartikel (refereegranskat)abstract
    • Oncogenes are commonly amplified on particles of extrachromosomal DNA (ecDNA) in cancer(1,2), but our understanding of the structure of ecDNA and its effect on gene regulation is limited. Here, by integrating ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing, we demonstrate the structure of circular ecDNA. Pan-cancer analyses reveal that oncogenes encoded on ecDNA are among the most highly expressed genes in the transcriptome of the tumours, linking increased copy number with high transcription levels. Quantitative assessment of the chromatin state reveals that although ecDNA is packaged into chromatin with intact domain structure, it lacks higher-order compaction that is typical of chromosomes and displays significantly enhanced chromatin accessibility. Furthermore, ecDNA is shown to have a significantly greater number of ultra-long-range interactions with active chromatin, which provides insight into how the structure of circular ecDNA affects oncogene function, and connects ecDNA biology with modern cancer genomics and epigenetics.
  •  
9.
  • Xie, Liangqi, et al. (författare)
  • 3D ATAC-PALM : super-resolution imaging of the accessible genome
  • 2020
  • Ingår i: Nature Methods. - : NATURE PUBLISHING GROUP. - 1548-7091 .- 1548-7105. ; 17:4, s. 430-436
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D ATAC-PALM integrates ATAC with super-resolution imaging for nanoscale views of the accessible genome. When combined with FISH, protein fluorescence and genetic perturbation, the method enables investigation of accessible chromatin in situ. To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.
  •  
10.
  • Xie, Liangqi, et al. (författare)
  • BRD2 compartmentalizes the accessible genome
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:4, s. 481-491
  • Tidskriftsartikel (refereegranskat)abstract
    • BRD2 facilitates mixing and compartmentalization of active chromatin upon cohesin depletion. BRD2's function is counteracted by cohesin and BRD4. Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy