SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Yanxue) "

Sökning: WFRF:(Zhang Yanxue)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Yanting, et al. (författare)
  • Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:11, s. 17820-17830
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct nitrogen photofixation is a feasible solution toward sustainable production of ammonia under mild conditions. However, the generation of active sites for solar-dirven nitrogen fixation not only limits the fundamental understanding of the relationship among light absorption, charge transfer, and catalytic efficiency but also influences the photocatalytic activity. Herein, we report two-dimensional boron-doped niobic acid nanosheets with oxygen vacancies (B-V-o-HNbO3 NSs) for efficient N-2 photofixation in the absence of any scavengers and cocatalysts. Impressively, B-V-o-HNbO3 NS as a model catalyst achieves the enhanced ammonia evolution rate of 170 mu mol g(cat)(-1) h(-1) in pure water under visible-light irradiation. The doublet coupling representing (NH4+)-N-15 in an isotopic labeling experiment and in situ infrared spectra confirm the reliable ammonia generation. The experimental analysis and density functional theory (DFT) calculations indicate that the strong synergy of boron dopant and oxygen vacancy regulates band structure of niobic acid, facilitates photogenerated charge transfer, reduces free energy barriers, accelerates reaction kinetics, and promotes the high rates of ammonia evolution. This work provides a general strategy to design active photocatalysts toward solar N-2 conversion.
  •  
2.
  • Fan, Zhaozhong, et al. (författare)
  • Oxygen-Bridged Indium-Nickel Atomic Pair as Dual-Metal Active Sites Enabling Synergistic Electrocatalytic CO2 Reduction
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 62:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-atom catalysts offer a promising pathway for electrochemical CO2 conversion. However, it is still a challenge to optimize the electrochemical performance of dual-atom catalysts. Here, an atomic indium-nickel dual-sites catalyst bridged by an axial oxygen atom (O-In-N6-Ni moiety) was anchored on nitrogenated carbon (InNi DS/NC). InNi DS/NC exhibits superior CO selectivity with Faradaic efficiency higher than 90 % over a wide potential range from −0.5 to −0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, an industrial CO partial current density up to 317.2 mA cm−2 is achieved at −1.0 V vs. RHE in a flow cell. In situ ATR-SEIRAS combined with theory calculations reveal that the synergistic effect of In-Ni dual-sites and O atom bridge not only reduces the reaction barrier for the formation of *COOH, but also retards the undesired hydrogen evolution reaction. This work provides a feasible strategy to construct dual-site catalysts towards energy conversion.
  •  
3.
  • Zhai, Panlong, et al. (författare)
  • Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rational design of the catalysts is impressive for sustainable energy conversion. However, there is a grand challenge to engineer active sites at the interface. Herein, hierarchical transition bimetal oxides/sulfides heterostructure arrays interacting two-dimensional MoOx/MoS2 nanosheets attached to one-dimensional NiOx/Ni3S2 nanorods were fabricated by oxidation/hydrogenation-induced surface reconfiguration strategy. The NiMoOx/NiMoS heterostructure array exhibits the overpotentials of 38mV for hydrogen evolution and 186mV for oxygen evolution at 10mAcm(-2), even surviving at a large current density of 500mAcm(-2) with long-term stability. Due to optimized adsorption energies and accelerated water splitting kinetics by theory calculations, the assembled two-electrode cell delivers the industrially relevant current densities of 500 and 1000mAcm(-2) at record low cell voltages of 1.60 and 1.66V with excellent durability. This research provides a promising avenue to enhance the electrocatalytic performance of the catalysts by engineering interfacial active sites toward large-scale water splitting. While water splitting is an appealing carbon-neutral strategy for renewable energy generation, there is a need to develop new active, cost-effective catalysts. Here, authors prepare a nickel-molybdenum oxide/sulfide heterojunctions as bifunctional H-2 and O-2 evolution electrocatalysts.
  •  
4.
  • Zhang, Xiaomeng, et al. (författare)
  • Engineering Single-Atomic Ni-N-4-O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:49, s. 20657-20669
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct photoelectrochemical (PEC) water splitting is a promising solution for solar energy conversion; however, there is a pressing bottleneck to address the intrinsic charge transport for the enhancement of PEC performance. Herein, a versatile coupling strategy was developed to engineer atomically dispersed Ni-N-4 sites coordinated with an axial direction oxygen atom (Ni-N-4-O) incorporated between oxygen evolution cocatalyst (OEC) and semiconductor photoanode, boosting the photogenerated electron-hole separation and thus improving PEC activity. This state-ofthe-art OEC/Ni-N-4-O/BiVO4 photoanode exhibits a record high photo-current density of 6.0 mA cm(-2) at 1.23 V versus reversible hydrogen electrode (vs RHE), over approximately 3.97 times larger than that of BiVO4, achieving outstanding long-term photostability. From X- ray absorption fine structure analysis and density functional theory calculations, the enhanced PEC performance is attributed to the construction of single-atomic Ni-N-4-O moiety in OEC/BiVO4, facilitating the holes transfer, decreasing the free energy barriers, and accelerating the reaction kinetics. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes for feasible PEC water splitting application.
  •  
5.
  • Chen, Ming, et al. (författare)
  • Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly
  • 2020
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 6:3, s. 314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosystem I (PSI) is able to form different oligomeric states across various species. To reveal the structural basis for PSI dimerization and tetramerization, we structurally investigated PSI from the cyanobacterium Anabaena. This revealed a disrupted trimerization domain due to lack of the terminal residues of PsaL in the lumen, which resulted in PSI dimers with loose connections between monomers and weaker energy-coupled chlorophylls than in the trimer. At the dimer surface, specific phospholipids, cofactors and interactions in combination facilitated recruitment of another dimer to form a tetramer. Taken together, the relaxed luminal connections and lipid specificity at the dimer interface account for membrane curvature. PSI tetramer assembly appears to increase the surface area of the thylakoid membrane, which would contribute to PSI crowding. Photosystem I from the cyanobacterium Anabaena has a disrupted trimerization domain resulting in dimers with loose connections between monomers. Phospholipids and cofactors at the dimer surface facilitate further dimerization to form a tetramer.
  •  
6.
  • Zhai, Panlong, et al. (författare)
  • Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rational design efficient transition metal-based electrocatalysts for oxygen evolution reaction (OER) is critical for water splitting. However, industrial water-alkali electrolysis requires large current densities at low overpotentials, always limited by intrinsic activity. Herein, we report hierarchical bimetal nitride/hydroxide (NiMoN/NiFe LDH) array as model catalyst, regulating the electronic states and tracking the relationship of structure-activity. As-activated NiMoN/NiFe LDH exhibits the industrially required current density of 1000 mA cm(-2) at overpotential of 266 mV with 250 h stability for OER. Especially, in-situ electrochemical spectroscopic reveals that heterointerface facilitates dynamic structure evolution to optimize electronic structure. Operando electrochemical impedance spectroscopy implies accelerated OER kinetics and intermediate evolution due to fast charge transport. The OER mechanism is revealed by the combination of theoretical and experimental studies, indicating as-activated NiMoN/NiFe LDH follows lattice oxygen oxidation mechanism with accelerated kinetics. This work paves an avenue to develop efficient catalysts for industrial water electrolysis via tuning electronic states. Rational design of efficient electrocatalysts for oxygen evolution reaction is critical for water-alkali electrolysis. Here, the authors fabricate a NiMoN/NiFe layered double hydroxide and show the accelerated oxygen evolution kinetics are due to the heterointerface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy