SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Yihao) "

Sökning: WFRF:(Zhang Yihao)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
3.
  • Zhao, Yihao, et al. (författare)
  • Sigmoid Accelerated Molecular Dynamics : An Efficient Enhanced Sampling Method for Biosystems
  • 2023
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185 .- 1948-7185. ; 14:4, s. 1103-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaussian accelerated molecular dynamics (GaMD) is recognized as a popular enhanced sampling method for tackling long-standing challenges in biomolecular simulations. Inspired by GaMD, Sigmoid accelerated molecular dynamics (SaMD) is proposed in this work by adding a Sigmoid boost potential to improve the balance between the highest acceleration and accurate reweighting. Compared with GaMD, SaMD extends the accessible time scale and improves the computational efficiency as tested in three tasks. In the alanine dipeptide task, SaMD can produce the free energy landscape with better accuracy and efficiency. In the chignolin folding task, the estimated Gibbs free energy difference can converge to the experimental value ∼30% faster. In the protein-ligand binding task, the bound conformations are closer to the crystal structure with a minimal ligand root-mean-square deviation of 1.7 Å. The binding of the ligand XK263 to the HIV protease is reproduced by SaMD in ∼60% less simulation time.
  •  
4.
  • Li, Yihao, et al. (författare)
  • c-Myb Enhances Breast Cancer Invasion and Metastasis through the Wnt/beta-Catenin/Axin2 Pathway
  • 2016
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 76:11, s. 3364-3375
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular underpinnings of aggressive breast cancers remain mainly obscure. Here we demonstrate that activation of the transcription factor c-Myb is required for the prometastatic character of basal breast cancers. An analysis of breast cancer patients led us to identify c-Myb as an activator of Wnt/beta-catenin signaling. c-Myb interacted with the intracellular Wnt effector beta-catenin and coactivated the Wnt/beta-catenin target genes Cyclin D1 and Axin2. Moreover, c-Myb controlled metastasis in an Axin2-dependent manner. Expression microarray analyses revealed a positive association between Axin2 and c-Myb, a target of the proinflammatory cytokine IL1 beta that was found to be required for IL1 beta-induced breast cancer cell invasion. Overall, our results identified c-Myb as a promoter of breast cancer invasion and metastasis through its ability to activate Wnt/beta-catenin/Axin2 signaling. (C) 2016 AACR.
  •  
5.
  • Li, Yihao, et al. (författare)
  • Genetic depletion and pharmacological targeting of alpha v integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models
  • 2015
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Increased expression of alpha v integrins is frequently associated with tumor cell adhesion, migration, invasion and metastasis, and correlates with poor prognosis in breast cancer. However, the mechanism by which alpha v integrins can enhance breast cancer progression is still largely unclear. The effects of therapeutic targeting of alpha v integrins in breast cancer also have yet to be investigated. Methods: We knocked down alpha v integrin in MDA-MB-231 and MCF10A-M4 breast cancer cells, or treated these cells with the alpha v antagonist GLPG0187. The effects of alpha v integrin depletion on mesenchymal markers, transforming growth factor-beta (TGF-beta)/Smad signaling and TGF-beta-induced target gene expression were analyzed in MDA-MB-231 cells by RNA analysis or Western blotting. The function of alpha v integrin on breast cancer cell migration was investigated by transwell assay in vitro, and its effect on breast cancer progression was assessed by both zebrafish and mouse xenografts in vivo. In the mouse model, GLPG0187 was administered separately, or in combination with the standard-of-care anti-resorptive agent zoledronate and the chemotherapeutic drug paclitaxel, to study the effects of combinational treatments on breast cancer metastasis. Results: Genetic interference and pharmacological targeting of alpha v integrin with GLPG0187 in different breast cancer cell lines inhibited invasion and metastasis in the zebrafish or mouse xenograft model. Depletion of alpha v integrin in MDA-MB-231 cells inhibited the expression of mesenchymal markers and the TGF-beta/Smad response. TGF-beta induced alpha v integrin mRNA expression and alpha v integrin was required for TGF-beta-induced breast cancer cell migration. Moreover, treatment of MDA-MB-231 cells with non-peptide RGD antagonist GLPG0187 decreased TGF-beta signaling. In the mouse xenografts GLPG0187 inhibited the progression of bone metastasis. Maximum efficacy of inhibition of bone metastasis was achieved when GLPG0187 was combined with the standard-of-care metastatic breast cancer treatments. Conclusion: These findings show that alpha v integrin is required for efficient TGF-beta/Smad signaling and TGF-beta-induced breast cancer cell migration, and for maintaining a mesenchymal phenotype of the breast cancer cells. Our results also provide evidence that targeting alpha v integrin could be an effective therapeutic approach for treatment of breast cancer tumors and/or metastases that overexpress alpha v integrin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy