SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Zaoli) "

Sökning: WFRF:(Zhang Zaoli)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Zhuo, et al. (författare)
  • Large mechanical properties enhancement in ceramics through vacancy-mediated unit cell disturbance
  • 2023
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring vacancies is a feasible way to improve the mechanical properties of ceramics. However, high concentrations of vacancies usually compromise the strength (or hardness). We show that a high elasticity and flexural strength could be achieved simultaneously using a nitride superlattice architecture with disordered anion vacancies up to 50%. Enhanced mechanical properties primarily result from a distinctive deformation mechanism in superlattice ceramics, i.e., unit-cell disturbances. Such a disturbance substantially relieves local high-stress concentration, thus enhancing deformability. No dislocation activity involved also rationalizes its high strength. The work renders a unique understanding of the deformation and strengthening/toughening mechanism in nitride ceramics.
  •  
2.
  • Janknecht, Rebecca, et al. (författare)
  • A Strategy to Enhance the B-Solubility and Mechanical Properties of Ti-B-N Thin Films
  • 2024
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 271
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ti–B–N system offers a wide range of possible meta(stable) phases, making it interesting for science and industry. However, the solubility for B within the face-centered cubic (fcc)-TiN lattice is rather limited and less studied, especially without forming B-rich phases. Therefore, we address how chemistries along the TiN–TiB2 or TiN–TiB tie-line influence this B-solubility. The variation between these two tie-lines is realized through non-reactive co-sputtering of a TiN, TiB2, and Ti target. We show that for variations along the TiN–TiB tie-line, even 8.9 at.% B (equivalent to 19.3 at.% non-metal fractions) can fully be incorporated into the fcc-TiNy lattice without forming other B-containing phases. The combination of detailed microstructural characterization through X-ray diffraction and transmission electron microscopy with ab initio calculations of fcc-Ti1-xNBx, fcc-TiN1-xBx, and fcc-TiN1-2xBx solid solutions indicates that B essentially substitutes N.The single-phase fcc-TiB0.17N0.69 (the highest B-containing sample along the TiN–TiB tie-line studied) exhibits the highest hardness H of 37.1±1.9 GPa combined with the highest fracture toughness KIC of 3.0±0.2 MPa·m1/2 among the samples studied. These are markedly above those of B-free TiN0.87 having H = 29.2±2.1 GPa and KIC = 2.7±<0.1 MPa·m1/2.
  •  
3.
  • Koutna, Nikola, et al. (författare)
  • Atomistic mechanisms underlying plasticity and crack growth in ceramics : a case study of AlN/TiN superlattices
  • 2022
  • Ingår i: Acta Materialia. - : Pergamon-Elsevier Science Ltd. - 1359-6454 .- 1873-2453. ; 229
  • Tidskriftsartikel (refereegranskat)abstract
    • Interfaces between components of a material govern its mechanical strength and fracture resistance. While a great number of interfaces is present in nanolayered materials, such as superlattices, their fundamental role during mechanical loading lacks understanding. Here we combine ab initio and classical molecular dynamics simulations, nanoindentation, and transmission electron microscopy to reveal atomistic mechanisms underlying plasticity and crack growth in B1 AlN(001)/TiN(001) superlattices under loading. The system is a model for modern refractory ceramics used as protective coatings. The simulations demonstrate an anisotropic response to uniaxial tensile deformation in principal crystallographic directions due to different strain-activated plastic deformation mechanisms. Superlattices strained orthogonal to (001) interfaces show modest plasticity and cleave parallel to AlN/TiN layers. Contrarily, B1-to-B3 or B1-to-B4(B-k) phase transformations in AlN facilitate a remarkable toughness enhancement upon in plane [110] and [100] tensile elongation, respectively. We verify the predictions experimentally and conclude that strain-induced crack growth-via loss of interface coherency, dislocation-pinning at interfaces, or layer interpenetration followed by formation of slip bands-can be hindered by controlling the thicknesses of the superlattice nanolayered components.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy