SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Deqiang 1989 ) "

Sökning: WFRF:(Zhao Deqiang 1989 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Qi, et al. (författare)
  • Effective photocatalytic sterilization based on composites of Ag/InVO4/BiOBr : Factors, mechanism and application
  • 2023
  • Ingår i: Separation and Purification Technology. - 1383-5866 .- 1873-3794. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesized that photocatalysts with a low band gap could be useful in the sterilization of ceramic tiles in the natural environments of toilets using natural light in those settings. Certain photocatalysts can produce reactive oxygen species (ROS) under light illumination, which in turn are bactericidal. The properties of the BiOBr-containing photocatalysts were tuned by creating junctions and heterostructures with Ag and InVO4 and studied with respect to their bactericidal effect in dispersion. The bactericidal mechanism was studied through experiments in which active species were captured and via electron paramagnetic resonance (EPR) spectroscopy. At an optimal dosage of 0.5 g/L, the Ag/InVO4/BiOBr composite had a sterilization efficacy of 99.9999 % in 30 min under visible light illumination of 1000 W. It retained a sterilization efficacy of 99.999 % after four cycles. Anions such as Cl−, SO42−, and NO3− were shown to have no negative impact on sterilization efficacy. It was shown that the holes in the composite photocatalyst and hydroxyl radicals (·OH) were mechanistically critical for the sterilization. The photocatalysts were also studied in the field in the natural environment of a restroom, where they were loaded on ceramic tiles. Samples were collected from the surface of the ceramic tiles and analyzed for bacterial cultures and microbial diversity. The results were compared in the scope of the sterilization ability of various agents at the microbial level. The ceramic tiles loaded with Ag/InVO4/BiOBr showed the least amount of bacteria on their surfaces, and the microbial community richness was also the lowest.
  •  
2.
  • Li, Fushao, et al. (författare)
  • Catalyzing oxygen reduction reaction with a worm-like oxide Ca3Co2O6 in solid-oxide fuel cells
  • 2024
  • Ingår i: Journal of Materials Research. - 0884-2914 .- 2044-5326. ; 39:12, s. 1770-1782
  • Tidskriftsartikel (refereegranskat)abstract
    • A worm-like oxide Ca3Co2O6 was prepared by electrostatic spinning as a cathode material for solid-oxide fuel cells. Compared to the plain granular structure, the worm-like Ca3Co2O6 exhibits a desirable morphological organization and an enhanced electrochemical performance. At 1073 K, polarization resistance with the worm-like cathode is favorably reduced to 0.151 Ω cm2, and the power peak of the corresponding single cell reaches to 512 mW cm−2, showing a fast cathodic kinetics. By contrast, the polarization resistance with the plain cathode is 0.275 Ω cm2, and the power peak of the corresponding single cell is 406 mW cm−2. Under a constant voltage load of applied 0.6 V at 1023 K, cell power with the worm-like cathode maintains steadily from 420 to 400 mW cm−2 after 14 h of running time, showing a less fading rate, a more stable performance, and a better application prospect than the plain cathode.
  •  
3.
  • Li, Xin, et al. (författare)
  • Halide Double Perovskite Nanocrystals Doped with Rare-Earth Ions for Multifunctional Applications
  • 2023
  • Ingår i: Advanced Science. - 2198-3844. ; 10:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Most lead-free halide double perovskite materials display low photoluminescence quantum yield (PLQY) due to the indirect bandgap or forbidden transition. Doping is an effective strategy to tailor the optical properties of materials. Herein, efficient blue-emitting Sb3+-doped Cs2NaInCl6 nanocrystals (NCs) are selected as host, rare-earth (RE) ions (Sm3+, Eu3+, Tb3+, and Dy3+) are incorporated into the host, and excellent PLQY of 80.1% is obtained. Femtosecond transient absorption measurement found that RE ions not only served as the activator ions but also filled the deep vacancy defects. Anti-counterfeiting, optical thermometry, and white-light-emitting diodes (WLEDs) are exhibited using these RE ions-doped halide double perovskite NCs. For the optical thermometry based on Sm3+-doped Cs2NaInCl6:Sb3+ NCs, the maximum relative sensitivity is 0.753% K−1, which is higher than those of most temperature-sensing materials. Moreover, the WLED fabricated by Sm3+-doped Cs2NaInCl6:Sb3+ NCs@PMMA displays CIE color coordinates of (0.30, 0.28), a luminous efficiency of 37.5 lm W−1, a CCT of 8035 K, and a CRI over 80, which indicate that Sm3+-doped Cs2NaInCl6:Sb3+ NCs are promising single-component white-light-emitting phosphors for next-generation lighting and display technologies. 
  •  
4.
  • Zhao, Deqiang, 1989-, et al. (författare)
  • Research Progress on Inactivation of Bacteriophages by Visible-Light Photocatalytic Composite Materials : A Mini Review
  • 2024
  • Ingår i: Materials. - 1996-1944. ; 17:1
  • Forskningsöversikt (refereegranskat)abstract
    • Infectious diseases caused by waterborne viruses have attracted researchers’ great attention. To ensure a safe water environment, it is important to advance water treatment and disinfection technology. Photocatalytic technology offers an efficient and practical approach for achieving this goal. This paper reviews the latest studies on visible-light composite catalysts for bacteriophage inactivation, with a main focus on three distinct categories: modified UV materials, direct visible-light materials and carbon-based materials. This review gives an insight into the progress in photocatalytic material development and offers a promising solution for bacteriophage inactivation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy