SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Xiangen) "

Sökning: WFRF:(Zhao Xiangen)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhao, Xiangen, et al. (författare)
  • Elongation and branching of stem channels produced by positive streamers in long air gaps
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The elongation and branching of long positive spark discharges in the laboratory and in lightning have been attributed to the formation of thermalized channels inside a diffuse, glow-like streamer section at the leader head. It is experimentally shown here that the structured morphology of streamers produce low-density stem channels that elongate and branch well before a new leader channel section is formed. These non-thermalized stems are also shown to develop ahead of a developing leader channel. These findings are based on high-speed photography and Schlieren imaging used to visualize both the morphology of streamer filaments and stem channels. Numerical analysis is also performed to estimate the axial temperature and density of the stem channels. A stem-driven mechanism for the propagation and branching of positive long air gap discharges is proposed and discussed based on the presence of not-yet thermalized, low density channels formed by streamer ensembles at the leader head.
  •  
2.
  • Zhao, Xiangen, et al. (författare)
  • Ionization Activity Detected During Dark Periods in Long Air Positive Sparks
  • 2023
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The dark period in long air gap discharges has been assumed in the literature as the time between consecutive streamer current pulses when ionization and luminosity are absent. These dark periods are also present in natural lightning, in processes such as the inception and propagation of upward positive leaders, the development of needles, as well as transient luminous events in the upper atmosphere. Only recently, faint luminosity has been observed during dark periods, challenging this assumption. This paper aims to study any possible electrical activity during dark periods by means of experiments supported by computer simulation. Therefore, an experimental platform, including low-current measurements, Schlieren and standard photography as well as ultraviolet (UV)-photon detection was used to observe the electrical-optical-thermal characteristics of the dark period. A complementary numerical model was used to estimate the streamer space charge spatial distribution and its drift during dark periods. It is found that faint UV and visible light during the dark period is emitted exactly at the location of the low-density streamer stem channel. This process is accompanied by the generation of an electronic current in the order of hundred microamps to milliamps. The simulation results show that this ionization activity occurs due to strong reduced electric fields in the residual stem channel above 112 Td, which is mainly determined by a combination of applied voltage, space charge distribution, and localized heating. Thus, the presented results show that there is indeed ionization activity during dark periods in long air gaps, which maintains a continuous glow-like discharge.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Becerra Garcia, Marl ... (2)
He, Junjia (2)
Zhao, Xiangen (2)
Liu, Yang (1)
Yang, Yongchao (1)
Wang, Xiankang (1)
visa fler...
Du, Yaping (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy