SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Ziwen) "

Sökning: WFRF:(Zhao Ziwen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ganguli, Sagar, et al. (författare)
  • Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 62:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmon-enhanced electrocatalysis (PEEC), based on a combination of localized surface plasmon resonance excitation and an electrochemical bias applied to a plasmonic material, can result in improved electrical-to-chemical energy conversion compared to conventional electrocatalysis. Here, we demonstrate the advantages of nano-impact single-entity electrochemistry (SEE) for investigating the intrinsic activity of plasmonic catalysts at the single-particle level using glucose electrooxidation and oxygen reduction on gold nanoparticles as model reactions. We show that in conventional ensemble measurements, plasmonic effects have minimal impact on photocurrents. We suggest that this is due to the continuous equilibration of the Fermi level (EF) of the deposited gold nanoparticles with the EF of the working electrode, leading to fast neutralization of hot carriers by the measuring circuit. The photocurrents detected in the ensemble measurements are primarily caused by photo-induced heating of the supporting electrode material. In SEE, the EF of suspended gold nanoparticles is unaffected by the working electrode potential. As a result, plasmonic effects are the dominant source of photocurrents under SEE experimental conditions.
  •  
2.
  • Zhao, Ziwen, et al. (författare)
  • Automated Analysis of Nano-Impact Single-Entity Electrochemistry Signals Using Unsupervised Machine Learning and Template Matching
  • 2024
  • Ingår i: ADVANCED INTELLIGENT SYSTEMS. - : John Wiley & Sons. - 2640-4567. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nano-impact (NIE) (also referred to as collision) single-entity electrochemistry is an emerging technique that enables electrochemical investigation of individual entities, ranging from metal nanoparticles to single cells and biomolecules. To obtain meaningful information from NIE experiments, analysis and feature extraction on large datasets are necessary. Herein, a method is developed for the automated analysis of NIE data based on unsupervised machine learning and template matching approaches. Template matching not only facilitates downstream processing of the NIE data but also provides a more accurate analysis of the NIE signal characteristics and variations that are difficult to discern with conventional data analysis techniques, such as the height threshold method. The developed algorithm enables fast automated processing of large experimental datasets recorded with different systems, requiring minimal human intervention and thereby eliminating human bias in data analysis. As a result, it improves the standardization of data processing and NIE signal interpretation across various experiments and applications. Nano-impact (NIE) electrochemistry is an emerging technique for studying individual entities. Analyzing large NIE datasets, often with low signal-to-noise ratios, is challenging. Herein, an automated approach is introduced using unsupervised machine learning and template matching for accurate feature extraction from spike-shaped NIE signals. It improves data processing, accuracy and standardization, reducing human bias in signal interpretation across experiments.image (c) 2023 WILEY-VCH GmbH
  •  
3.
  • Zhao, Ziwen, et al. (författare)
  • Harmonics propagation and interaction evaluation in small-scale wind farms and hydroelectric generating systems
  • 2022
  • Ingår i: ISA transactions. - : Elsevier BV. - 0019-0578 .- 1879-2022. ; 129, s. 334-344
  • Tidskriftsartikel (refereegranskat)abstract
    • The harmonics exacerbated by the integration of distributed energy such as wind power has been extensively studied. However, the interaction and propagation mechanism between harmonic sources in the hydro-wind complementary generation system are still not clear. To tackle this challenge, the presented study establishes the hydro-wind complementary generation system model and explores the harmonics propagation and interaction in all components. Then three operation mode of complementary system (scenario 1: stand-alone Hydroelectric Generating System, scenario 2: stand-alone Wind Farm (WF) and scenario 3: complementary generation system) are selected. The results demonstrate that the integration of HGS diminishes the harmonic at DFIG side but at the grid side. In complementary generation system, the THDu rises but the corresponding THDi declines due to the regulation of power grid. Furthermore, the odd harmonics interactions analysis reveal that the doubly-fed induction generator's (DFIG) side and the stator's side are the two high-risk sources in the complementary generation process. The presented results provide a basis for power quality evaluation of hydro-wind complementary generation system. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy