SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhaunerchyk V.) "

Sökning: WFRF:(Zhaunerchyk V.)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allum, F., et al. (författare)
  • A localized view on molecular dissociation via electron-ion partial covariance
  • 2022
  • Ingår i: Communications Chemistry. - : Springer Science and Business Media LLC. - 2399-3669. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d(3/2) and 4d(5/2) atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site. Coincidence experiments at free-electron lasers enable time resolved site-specific investigations of molecular photochemistry at high signal rates, but isolating individual dissociation processes still poses a considerable technical challenge. Here, the authors use electron-ion partial covariance imaging to isolate otherwise elusive chemical shifts in UV-induced photofragmentation pathways of the prototypical chiral molecule 1-iodo-2-methylbutane.
  •  
2.
  • Sanchez-Gonzalez, A., et al. (författare)
  • Auger electron and photoabsorption spectra of glycine in the vicinity of the oxygen K-edge measured with an X-FEL
  • 2015
  • Ingår i: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 48:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first measurement of the near oxygen K-edge auger spectrum of the glycine molecule. Our work employed an x-ray free electron laser as the photon source operated with input photon energies tunable between 527 and 547 eV. Complete electron spectra were recorded at each photon energy in the tuning range, revealing resonant and non-resonant auger structures. Finally ab initio theoretical predictions are compared with the measured above the edge auger spectrum and an assignment of auger decay channels is performed.
  •  
3.
  •  
4.
  • Al-Khalili, A, et al. (författare)
  • Dissociative recombination cross section and branching ratios of protonated dimethyl disulfide and N-methylacetamide
  • 2004
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 121:12, s. 5700-5708
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl disulfide (DMDS) and N-methylacetamide are two first choice model systems that represent the disulfide bridge bonding and the peptide bonding in proteins. These molecules are therefore suitable for investigation of the mechanisms involved when proteins fragment under electron capture dissociation (ECD). The dissociative recombination cross sections for both protonated DMDS and protonated N-methylacetamide were determined at electron energies ranging from 0.001 to 0.3 eV. Also, the branching ratios at 0 eV center-of-mass collision energy were determined. The present results give support for the indirect mechanism of ECD, where free hydrogen atoms produced in the initial fragmentation step induce further decomposition. We suggest that both indirect and direct dissociations play a role in ECD.
  •  
5.
  • Barillot, T., et al. (författare)
  • Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
  • 2021
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump-x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics.
  •  
6.
  • Ehlerding, A., et al. (författare)
  • The dissociative recombination of fluorocarbon ions III : CF2+ and CF3
  • 2006
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 39:4, s. 805-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross sections and branching ratios are presented for the dissociative recombination of the CF2+ and C-3(+) ions with electrons. It is found that the channel producing CF + F is dominant for the reaction with CF2+ and the production of CF2 + F is dominant for the reaction with CF3+. The cross sections for these two ions are very similar.
  •  
7.
  •  
8.
  • Geppert, W. D., et al. (författare)
  • Dissociative recombination of CD3OD2
  • 2005
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 1, s. 117-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The branching ratios of the different reaction pathways and the overall rate of the dissociative recombination of CD3OD2 + were measured at the CRYRING storage ring located at the Manne Siegbahn Laboratory in Stockholm, Sweden. A preliminary analysis of the data yielded that formation of methanol accounts for only 6±2% of the total reaction rate. Largely, dissociative recombination of CD3OD 2 + involves fragmentation of the C-O bond, the major process being the three-body break-up forming CD3, OD and D (branching ratio 0.59). A non-negligible formation of interstellar methanol by the previously proposed mechanism is therefore very unlikely.
  •  
9.
  • Geppert, W D, et al. (författare)
  • Dissociative recombination of nitrile ions : DCCCN+ and DCCCND
  • 2004
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 613:2, s. 1302-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Branching ratios and absolute cross sections have been measured for the dissociative recombination of DCCCN+ and DCCCND+ using the CRYRING ion storage ring. In the case of DCCCN+ the dissociation yielding D + C3N and those leading to two fragments containing a pair of heavy atoms dominate, whereas pathways producing a fragment with three heavy atoms play only a minor role. Conversely, for DCCCND+, only those channels preserving the carbon chain or producing two fragments with a pair of heavy atoms each are detected. The cross sections of the reactions are very similar and can be fitted to the expressions sigma = (2.9 +/- 0.5) x 10(-15)E(eV)(-1.05 +/- 0.02) cm(2) and sigma = (2.3 +/- 0.4) x 10(-15)E(eV)(-1.10 +/- 0.02) cm(2) for DCCCN+ and DCCCND+, respectively. From these data, thermal reaction rates of k(T) = (1.5 +/- 0.3) x 10(-6)(T/300 K)(-0.60 +/- 0.02) cm(3) s(-1) and k(T) = (1.5 +/- 0.3) x 10(-6)(T/300 K)(-0.58 +/- 0.02) cm(3) s(-1) were calculated for DCCCN+ and DCCCND+, respectively. These rates and branching ratios are compared with those hitherto used in astrophysical models.
  •  
10.
  • Geppert, W.D., et al. (författare)
  • Dissociative recombination of protonated methanol
  • 2006
  • Ingår i: Faraday discussions. - Cambridge : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 133, s. 177-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH3OH2+ and CD3OD2+ have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2+ and CD3OD2+, respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C - O bond, the major process being the three-body break-up forming CH3, OH and H (CD3, OD and D). The overall cross sections are best fitted by sigma = 1.2 +/- 0.1 x 10(-15) E-1.15 +/- 0.02 cm(2) and sigma = 9.6 +/- 0.9 x 10(-16) E-1.20 +/- 0.02 cm(2) for CH3OH2+ and CD3OD2+, respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 +/- 0.9 x 10(-7) (T/300) (- 0.59 +/- 0.02) cm(3) s(-1) (CH3OH2+) and k( T) = 9.1 +/- 0.9 x 10(-7) (T/ 300) (- 0.63 +/- 0.02) cm(3) s(-1)(CD3OD2+) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH3+ and H2O and subsequent dissociative recombination of the resulting CH3OH2+ ion to yield methanol and hydrogen atoms is therefore very unlikely.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy