SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Junxiong) "

Sökning: WFRF:(Zheng Junxiong)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chen, Dongfeng, et al. (författare)
  • The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia.
  • 2016
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Precursor-B cell receptor (pre-BCR) signaling represents a crucial checkpoint at the pre-B cell stage. Aberrant pre-BCR signaling is considered as a key factor for B-cell precursor acute lymphoblastic leukemia (BCP-ALL) development. BCP-ALL are believed to be arrested at the pre-BCR checkpoint independent of pre-BCR expression. However, the cellular stage at which BCP-ALL are arrested and whether this relates to expression of the pre-BCR components (IGHM, IGLL1 and VPREB1) is still unclear. Here, we show differential protein expression and copy number variation (CNV) patterns of the pre-BCR components in pediatric BCP-ALL. Moreover, analyzing six BCP-ALL data sets (n = 733), we demonstrate that TCF3-PBX1 ALL express high levels of IGHM, IGLL1 and VPREB1, and are arrested at the pre-B stage. By contrast, ETV6-RUNX1 ALL express low levels of IGHM or VPREB1, and are arrested at the pro-B stage. Irrespective of subtype, ALL with high levels of IGHM, IGLL1 and VPREB1 are arrested at the pre-B stage and correlate with good prognosis in high-risk pediatric BCP-ALL (n = 207). Our findings suggest that BCP-ALL are arrested at different cellular stages, which relates to the expression pattern of the pre-BCR components that could serve as prognostic markers for high-risk pediatric BCP-ALL patients.
  •  
3.
  • Sun, Yingyu, et al. (författare)
  • A glioma classification scheme based on coexpression modules of EGFR and PDGFRA
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 111:9, s. 3538-3543
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesized that key signaling pathways of glioma genesis might enable the molecular classification of gliomas. Gene coexpression modules around epidermal growth factor receptor (EGFR) (EM, 29 genes) or platelet derived growth factor receptor A (PDGFRA) (PM, 40 genes) in gliomas were identified. Based on EM and PM expression signatures, nonnegative matrix factorization reproducibly clustered 1,369 adult diffuse gliomas WHO grades II-IV from four independent databases generated in three continents, into the subtypes (EM, PM and EMlowPMlow gliomas) in a morphology-independent manner. Besides their distinct patterns of genomic alterations, EM gliomas were associated with higher age at diagnosis, poorer prognosis, and stronger expression of neural stem cell and astrogenesis genes. Both PM and EMlowPMlow gliomas were associated with younger age at diagnosis and better prognosis. PM gliomas were enriched in the expression of oligodendrogenesis genes, whereas EMlowPMlow gliomas were enriched in the signatures of mature neurons and oligodendrocytes. The EM/PM-based molecular classification scheme is applicable to adult low-grade and high-grade diffuse gliomas, and outperforms existing classification schemes in assigning diffuse gliomas to subtypes with distinct transcriptomic and genomic profiles. The majority of the EM/PM classifiers, including regulators of glial fate decisions, have not been extensively studied in glioma biology. Subsets of these classifiers were coexpressed in mouse glial precursor cells, and frequently amplified or lost in an EM/PM glioma subtypespecific manner, resulting in somatic copy number alteration-dependent gene expression that contributes to EM/PM signatures in glioma samples. EM/PM-based molecular classification provides a molecular diagnostic framework to expedite the search for new glioma therapeutic targets.
  •  
4.
  • Zhao, Yun, et al. (författare)
  • Precise separation of spent lithium-ion cells in water without discharging for recycling
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 45, s. 1092-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • New methods for recycling lithium-ion batteries (LIBs) are needed because traditional recycling methods are based on battery pulverization, which requires pre-treatment of tedious and non-eco-friendly discharging and results in low efficiency and high waste generation in post-treatment. Separating the components of recycled LIB cells followed by reuse or conversion of individual components could minimize material cross-contamination while avoiding excessive consumption of energy and chemicals. However, disposing of charged LIB cells is hazardous due to the high reactivity of lithiated graphite towards cathode materials and air, and the toxicity and flammability of the electrolytes. Here we demonstrate that the disassembly of charged jellyroll LIB cells in water with a single main step reveals no emissions from the cells and near perfect recycling efficiencies that exceed the targets of the US Department of Energy and Batteries Europe. The precise non-destructive mechanical method separates the components from jellyroll cell in water, avoiding both uncontrollable reactions from the anode and burning of the electrolyte, while allowing only a limited fraction of the anode lithium to react with water. Recycling in this way allows the recovery of materials with a value of ∼7.14 $ kg−1 cell, which is higher than that of physical separation (∼5.40 $ kg−1 cell) and much greater than the overall revenue achieved using element extraction methods (<1.00 $ kg−1 cell). The precise separation method could thus facilitate the establishment of a circular economy within the LIB industry and build a strong bridge between academia and the battery recycling industry.
  •  
5.
  • Zhao, Yun, et al. (författare)
  • Rational design of functional binder systems for high-energy lithium-based rechargeable batteries
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 35, s. 353-377
  • Tidskriftsartikel (refereegranskat)abstract
    • Binders, which maintain the structural integrity of electrodes, are critical components of lithium-based rechargeable batteries (LBRBs) that significantly affect battery performances, despite accounting for 2 to 5 wt% (up to 5 wt% but usually 2 wt%) of the entire electrode. Traditional polyvinylidene fluoride (PVDF) binders that interact with electrode components via weak van der Waals forces are effective in conventional LBRB systems (graphite/LiCoO2, etc.). However, its stable fluorinated structures limit the potential for further functionalization and inhibit strong interactions towards external substances. Consequently, they are unsuitable for next-generation battery systems with high energy density. There is thus a need for new functional binders with facile features compatible with novel electrode materials and chemistries. Here in this review we consider the strategies for rationally designing these functional binders. On the basis of fundamental understandings of the issues for high-energy electrode materials, we have summarized seven desired functions that binders should possess depending on the target electrodes where the binders will be applied. Then a variety of leading-edge functional binders are reviewed to show how their chemical structures realize these above functions and how the employment of these binders affects the cell's electrochemical performances. Finally the corresponding design strategies are therefore proposed, and future research opportunities as well as challenges relating to LBRB binders are outlined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy