SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhong Ziqian 1995) "

Sökning: WFRF:(Zhong Ziqian 1995)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • He, Bin, et al. (författare)
  • Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks
  • 2022
  • Ingår i: National Science Review. - : Oxford University Press (OUP). - 2095-5138 .- 2053-714X. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Interannual variability of the terrestrial ecosystem carbon sink is substantially regulated by various environmental variables and highly dominates the interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is necessary to determine dominating factors affecting the interannual variability of the carbon sink to improve our capability of predicting future terrestrial carbon sinks. Using global datasets derived from machine-learning methods and process-based ecosystem models, this study reveals that the interannual variability of the atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with net ecosystem production (NEP) and substantially impacted the interannual variability of the atmospheric CO2 growth rate (CGR). Further analyses found widespread constraints of VPD interannual variability on terrestrial gross primary production (GPP), causing VPD to impact NEP and CGR. Partial correlation analysis confirms the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to other environmental variables. Current Earth system models underestimate the interannual variability in VPD and its impacts on GPP and NEP. Our results highlight the importance of VPD for terrestrial carbon sinks in assessing ecosystems' responses to future climate conditions.
  •  
2.
  • Wang, Sifan, et al. (författare)
  • Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire carbon emissions over Equatorial Asia (EQAS) play a critical role in the global carbon cycle. Most regional fire emissions (89.0%) occur in the dry season, but how changes in the dry-season length affect the fire emissions remains poorly understood. Here we show that, the length of the EQAS dry season has decreased significantly during 1979–2021, and the delayed dry season onset (5.4 ± 1.6 (± one standard error) days decade−1) due to increased precipitation (36.4 ± 9.1 mm decade−1) in the early dry season is the main reason. The dry season length is strongly correlated with the length of the fire season. Increased precipitation during the early dry season led to a significant reduction (May: −0.7 ± 0.4 Tg C decade−1; August: −12.9 ± 6.7 Tg C decade−1) in fire carbon emissions during the early and peak fire season. Climate models from the Coupled Model Intercomparison Project Phase 6 project a continued decline in future dry season length in EQAS under medium and high-emission scenarios, implying further reductions in fire carbon emissions.
  •  
3.
  • Zhong, Ziqian, 1995, et al. (författare)
  • Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:32
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.
  •  
4.
  • Zhong, Ziqian, 1995, et al. (författare)
  • Reversed asymmetric warming of sub-diurnal temperature over land during recent decades
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • In the latter half of the twentieth century, a significant climate phenomenon “diurnal asymmetric warming” emerged, wherein global land surface temperatures increased more rapidly during the night than during the day. However, recent episodes of global brightening and regional droughts and heatwaves have brought notable alterations to this asymmetric warming trend. Here, we re-evaluate sub-diurnal temperature patterns, revealing a substantial increase in the warming rates of daily maximum temperatures (Tmax), while daily minimum temperatures have remained relatively stable. This shift has resulted in a reversal of the diurnal warming trend, expanding the diurnal temperature range over recent decades. The intensified Tmax warming is attributed to a widespread reduction in cloud cover, which has led to increased solar irradiance at the surface. Our findings underscore the urgent need for enhanced scrutiny of recent temperature trends and their implications for the wider earth system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy