SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhou Jingyun) "

Sökning: WFRF:(Zhou Jingyun)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhou, Guoyi, et al. (författare)
  • Climate and litter C/N ratio constrain soil organic carbon accumulation
  • 2019
  • Ingår i: National Science Review. - : Oxford University Press (OUP). - 2095-5138 .- 2053-714X. ; 6:4, s. 746-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) plays critical roles in stabilizing atmospheric CO2 concentration, but the mechanistic controls on the amount and distribution of SOC on global scales are not well understood. In turn, this has hampered the ability to model global C budgets and to find measures to mitigate climate change. Here, based on the data from a large field survey campaign with 2600 plots across China's forest ecosystems and a global collection of published data from forested land, we find that a low litter carbon-to-nitrogen ratio (C/N) and high wetness index (P/PET, precipitation-to-potential-evapotranspiration ratio) are the two factors that promote SOC accumulation, with only minor contributions of litter quantity and soil texture. The field survey data demonstrated that high plant diversity decreased litter C/N and thus indirectly promoted SOC accumulation by increasing the litter quality. We conclude that any changes in plant-community composition, plant-species richness and environmental factors that can reduce the litter C/N ratio, or climatic changes that increase wetness index, may promote SOC accumulation. The study provides a guideline for modeling the carbon cycle of various ecosystem scales and formulates the principle for land-based actions for mitigating the rising atmospheric CO2 concentration.
  •  
2.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
3.
  • Smith, Pete, et al. (författare)
  • Sectoral approaches to improve regional carbon budgets
  • 2008
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 88:3-4, s. 209-249
  • Forskningsöversikt (refereegranskat)abstract
    • Humans utilise about 40% of the earth's net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other significant anthropogenic impacts on the global carbon cycle include human utilization of fossil fuels and impacts on less intensively managed systems such as peatlands, wetlands and permafrost. A great deal of knowledge, expertise and data is available within each sector. We describe the contribution of sectoral carbon budgets to our understanding of the global carbon cycle. Whilst many sectors exhibit similarities for carbon budgeting, some key differences arise due to differences in goods and services provided, ecology, management practices used, land-management personnel responsible, policies affecting land management, data types and availability, and the drivers of change. We review the methods and data sources available for assessing sectoral carbon budgets, and describe some of key data limitations and uncertainties for each sector in different regions of the world. We identify the main gaps in our knowledge/data, show that coverage is better for the developed world for most sectors, and suggest how sectoral carbon budgets could be improved in the future. Research priorities include the development of shared protocols through site networks, a move to full carbon accounting within sectors, and the assessment of full greenhouse gas budgets.
  •  
4.
  • Wu, Yuntao, et al. (författare)
  • Silicon promotes biomass accumulation in Phragmites australis under waterlogged conditions in coastal wetland
  • 2024
  • Ingår i: Plant and Soil. - : Springer Nature. - 0032-079X .- 1573-5036.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Previous studies have shown that silicon (Si) can affect plant growth and yield by regulating the availability of other nutrients. However, the mechanisms by which Si affects plant biomass accumulation in coastal wetlands are not well explored. Methods We conducted a sampling campaign across the whole growing season of Phragmites australis under waterlogging and drought conditions in coastal wetland, and quantified the effects of Si availability on biomass accumulation. Results Compared with drought condition, the waterlogged condition improved the utilization efficiency of nitrogen (N) and phosphorus (P) of P. australis regulated by higher Si contents. Meanwhile, the increased Si contents promoted the utilization of N and P in leaf, suggesting that the increase in Si contents optimizes the photosynthetic process. Lignin contents in P. australis decreased with the increasing Si contents, which confirmed that Si can replace structural carbon components. In addition, principal component analysis (PCA) showed aboveground biomass accumulation of P. australis was synchronized with Si accumulation, indicating that Si was a beneficial element to promote biomass accumulation. Conclusions Our study implies that increasing Si availability is conducive to biomass accumulation of P. australis in waterlogged wetlands, which will provide important scientific references for the management of coastal wetland ecosystem and the increase of global 'blue carbon' sequestration.
  •  
5.
  • Zhou, Yixi, et al. (författare)
  • Tunable Low Loss 1D Surface Plasmons in InAs Nanowires
  • 2018
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 30:35
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the ability to manipulate photons at nanoscale, plasmonics has become one of the most important branches in nanophotonics. The prerequisites for the technological application of plasmons include high confining ability (λ0/λp), low damping, and easy tunability. However, plasmons in typical plasmonic materials, i.e., noble metals, cannot satisfy these three requirements simultaneously and cause a disconnection to modern electronics. Here, the indium arsenide (InAs) nanowire is identified as a material that satisfies all the three prerequisites, providing a natural analogy with modern electronics. The dispersion relation of InAs plasmons is determined using the nanoinfrared imaging technique, and show that their associated wavelengths and damping ratio can be tuned by altering the nanowire diameter and dielectric environment. The InAs plasmons possess advantages such as high confining ability, low loss, and ease of fabrication. The observation of InAs plasmons could enable novel plasmonic circuits for future subwavelength applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Zhou, Wei (1)
Peng, Changhui (1)
Nabika, Toru (1)
März, Winfried (1)
Nethander, Maria, 19 ... (1)
Lyssenko, V. (1)
visa fler...
Orozco, Lorena (1)
Salomaa, Veikko (1)
Wang, Zhe (1)
De Borst, Gert J (1)
Olafsson, Isleifur (1)
Lind, Lars (1)
Ciais, Philippe (1)
Raitakari, Olli T (1)
van Heel, David A (1)
Loeffler, Markus (1)
Sattar, Naveed (1)
Campbell, Harry (1)
Ohlsson, Claes, 1965 (1)
Strachan, David P (1)
Deloukas, Panos (1)
Jonas, Jost B. (1)
Schulze, Matthias B. (1)
North, Kari E. (1)
Natarajan, Pradeep (1)
Franks, Paul W. (1)
Meidtner, Karina (1)
Wareham, Nicholas J. (1)
Shu, Xiao-Ou (1)
Zheng, Wei (1)
Kraft, Peter (1)
Kuusisto, Johanna (1)
Laakso, Markku (1)
McCarthy, Mark I (1)
Bork-Jensen, Jette (1)
Brandslund, Ivan (1)
Linneberg, Allan (1)
Grarup, Niels (1)
Pedersen, Oluf (1)
Hansen, Torben (1)
Ridker, Paul M. (1)
Chasman, Daniel I. (1)
Demirkan, Ayse (1)
Ikram, M. Arfan (1)
van Duijn, Cornelia ... (1)
Poveda, A. (1)
Langenberg, Claudia (1)
Aadahl, Mette (1)
Magnusson, Patrik K ... (1)
Pedersen, Nancy L (1)
visa färre...
Lärosäte
Lunds universitet (3)
Göteborgs universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy