SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhou Shengyang) "

Sökning: WFRF:(Zhou Shengyang)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afewerki, Samson, et al. (författare)
  • Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels
  • 2020
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 14:12, s. 17004-17017
  • Tidskriftsartikel (refereegranskat)abstract
    • The engineering of multifunctional biomaterials using a facile sustainable methodology that follows the principles of green chemistry is still largely unexplored but would be very beneficial to the world. Here, the employment of catalytic reactions in combination with biomass-derived starting materials in the design of biomaterials would promote the development of eco-friendly technologies and sustainable materials. Herein, we disclose the combination of two catalytic cycles (combined catalysis) comprising oxidative decarboxylation and quinone-catechol redox catalysis for engineering lignin-based multifunctional antimicrobial hydrogels. The bioinspired design mimics the catechol chemistry employed by marine mussels in nature. The resultant multifunctional sustainable hydrogels (1) are robust and elastic, (2) have strong antimicrobial activity, (3) are adhesive to skin tissue and various other surfaces, and (4) are able to self-mend. A systematic characterization was carried out to fully elucidate and understand the facile and efficient catalytic strategy and the subsequent multifunctional materials. Electron paramagnetic resonance analysis confirmed the long-lasting quinone-catechol redox environment within the hydrogel system. Initial in vitro biocompatibility studies demonstrated the low toxicity of the hydrogels. This proof-of-concept strategy could be developed into an important technological platform for the eco-friendly, bioinspired design of other multifunctional hydrogels and their use in various biomedical and flexible electronic applications.
  •  
2.
  • Kong, Xueying, et al. (författare)
  • All-cellulose-based freestanding porous carbon nanocomposites and their versatile applications
  • 2022
  • Ingår i: Composites Part B. - : Elsevier. - 1359-8368 .- 1879-1069. ; 232
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous carbons are key functional materials in a range of industrial processes such as gas adsorption and separation, water treatment, and energy conversion and storage. It is, however, important from a sustainability perspective for porous carbons to be synthesized from naturally abundant biopolymers. Nanoengineering of porous carbons using facile binder-free techniques presents significant challenges, but is deemed beneficial for broadening their field of use and improving their application performance. This paper discusses the processing of cellulose-based porous carbons interwoven with cellulose nanofibers to fabricate freestanding nanopapers and aerogels, aiming at developing processable, fully sustainable, and all-cellulose-based carbon nanocomposites. The aerogels, which have cellular networks, low density and high mechanical strength, were investigated as sorbents for CO2 capture and removal of various organics. The presence of rich ultramicropores allows the aerogels to adsorb relatively high amounts of CO2, with high selectivity of CO2-over-N-2 (up to 111). More importantly, the sorbents have high CO2 working capacities and excellent recyclability under temperature swing adsorption conditions. In addition, the aerogels can adsorb various organic solvents remarkably well, corresponding to 100-217 times their own weight. The nanopapers are active photothermal materials that can be applied as solar absorbers for interfacial solar vapor generation, providing a high evaporation rate (1.74 kg m(-2) h(-1) under one sun illumination). The nanopapers were also employed as electrodes in flexible, foldable super capacitors with high areal capacitances. This study may provide a basis for further development of and new application areas for all-cellulose-based nanocomposites.
  •  
3.
  • Kong, Xueying, et al. (författare)
  • Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device
  • 2021
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 171, s. 248-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Covalent organic frameworks (COFs) constitute a family of crystalline porous polymers that are being studied for electrochemical energy storage. However, their low electrical conductivity and poor processability have largely limited their electrochemical performances and practical applications. Here, we develop an interfacial synthesis method to grow few-layered 2D redox-active COFs (DAAQ-TFP COF) on the surface of carboxylated carbon nanotubes (c-CNTs) in order to fabricate core-shell c-CNT@COF nanofibers, for which the thickness and the morphology of the COF nanolayers can be finely controlled. When using the c-CNT@COFs as electrode material, the tailored nanostructure with high electrical conductivity allows efficient electron transfer, while the few-layered structure of the COF promotes fast electrolyte ion diffusion in the near-surface region, which results in an efficient utilization of the redox active sites in COF. More significantly, c-CNT@COFs with nanofibrous structure show good processability and can be assembled into freestanding and flexible nanopapers with the assistance of Cladophora cellulose. Given the good electrochemical performance and excellent flexibility, the nanopaper electrodes are assembled into flexible hybrid capacitors, showing high areal capacitance and extremely long lifetime. This study provides a new pathway for the development of next generation sustainable and flexible energy storage devices based on COFs and cellulose materials.
  •  
4.
  • Liu, Tianqi, et al. (författare)
  • Isolation and Identification of Pseudo Seven-Coordinate Ru(III) Intermediate Completing the Catalytic Cycle of Ru-bda Type of Water Oxidation Catalysts
  • 2022
  • Ingår i: CCS Chemistry. - : Chinese Chemical Society. - 2096-5745. ; 4:7, s. 2481-2490
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolation of RuIII-bda (17-electron specie) complex with an aqua ligand (2-electron donor) is challenging due to violation of the 18-electron rule. Although considerable efforts have been dedicated to mechanistic studies of water oxidation by the Ru-bda family, the structure and initial formation of the RuIII-bda aqua complex are still controversial. Herein, we challenge this often overlooked step by designing a pocket-shape Ru-based complex 1. The computational studies showed that 1 possesses the crucial hydrophobicity at the RuV(O) state as well as similar probability of access of terminal O to solvent water molecules when compared with classic Ru-bda catalysts. Through characterization of single-crystal structures at the RuII and RuIII states, a pseudo seven-coordinate “ready-to-go” aqua ligand with RuIII...O distance of 3.62 Å was observed. This aqua ligand was also found to be part of a formed hydrogen-bonding network, providing a good indication of how the RuIII-OH2 complex is formed.
  •  
5.
  • Liu, Tianqi, et al. (författare)
  • Promoting Proton Transfer and Stabilizing Intermediates in Catalytic Water Oxidation via Hydrophobic Outer Sphere Interactions
  • 2022
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 28:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The outer coordination sphere of metalloenzyme often plays an important role in its high catalytic activity, however, this principle is rarely considered in the design of man-made molecular catalysts. Herein, four Ru-bda (bda=2,2 '-bipyridine-6,6 '-dicarboxylate) based molecular water oxidation catalysts with well-defined outer spheres are designed and synthesized. Experimental and theoretical studies showed that the hydrophobic environment around the Ru center could lead to thermodynamic stabilization of the high-valent intermediates and kinetic acceleration of the proton transfer process during catalytic water oxidation. By this outer sphere stabilization, a 6-fold rate increase for water oxidation catalysis has been achieved.
  •  
6.
  • Wang, Zhaohui, et al. (författare)
  • Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for High-Capacity Dendrite-Free Sodium Metal Anodes
  • 2018
  • Ingår i: Advanced Functional Materials. - : Wiley-Blackwell. - 1616-301X .- 1616-3028. ; 28:48
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to its resource-abundant and favorable theoretical capacity, sodium metal is regarded as a promising anode material for sodium metal batteries. However, uncontrolled Na plating/stripping, including Na dendrite growth during cycling, has hindered its practical application. Herein, a sodiophilic, thin, and flexible silver nanopaper (AgNP) is designed based on interpenetrated nanocellulose and silver nanowires and is used as a dendrite-free Na metal electrode. Due to a network of highly conducting silver nanowire (0.6 Ω sq?1, 8200 S cm?1), the sodiophilic nature of silver, and the reduced internal strain within the flexible AgNP, a compact Na metal layer can be uniformly deposited on and reversibly stripped from the AgNP electrode without any observations of Na dendrites during cycling at 1 mA cm?2 for 800 h. As the AgNP electrode is only 2 µm thick, with a low mass loading of 0.88 mg cm?2, the AgNP?Na anode deposited with a Na deposition charge of 6 mAh cm?2 exhibits a capacity of 995 mAh g?1AgNP?Na, approaching that of a Na metal anode (1166 mAh g?1Na). The present approach provides new possibilities for the development of lightweight and stable metal batteries.
  •  
7.
  • Xu, Chao, et al. (författare)
  • Interweaving metal-€“organic framework-templated Co-€“Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488. ; 6:47, s. 24050-24057
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal–organic frameworks (MOFs) and nanocellulose represent emerging and traditional porous materials, respectively. The combination of these two materials in specific ways could generate novel nanomaterials with integrated advantages and versatile functionalities. This study outlines the development of hierarchical porous and conductive nanosheets based on zeolitic imidazolate framework-67 (ZIF-67, a Co-based MOF)-templated Co–Ni layered double hydroxide (LDH) nanocages, Cladophora cellulose (CC) nanofibers, and multi-walled carbon nanotubes (CNTs). The LDH–CC–CNT nanosheets can be used as flexible and foldable electrodes for energy storage devices (ESDs). The electrodes are associated with a high areal capacitance of up to 1979 mF cm−2 at a potential scan rate of 1 mV s−1. A flexible, foldable, and hybrid ESD is assembled from LDH–CC–CNT and CC–CNT electrodes with a PVA/KOH gel. The entire device has an areal capacitance of 168 mF cm−2 and an energy density of 0.6 mW h cm−3 (60 μW h cm−2), at a power density of 8.0 mW cm−3 (0.8 mW cm−2). These promising results demonstrate the potential of using MOFs and sustainable cellulose in flexible, foldable electronic energy storage devices.
  •  
8.
  • Xu, Chao, et al. (författare)
  • Interweaving Metal-organic Frameworks Templated Co-Ni Layered Double Hydroxide Nanocages with Nanocellulose and Carbon Nanotubes as Flexible Electrodes for Solid-State Supercapacitors
  • 2018
  • Ingår i: Interweaving Metal-organic Frameworks Templated Co-Ni Layered Double Hydroxide Nanocages with Nanocellulose and Carbon Nanotubes as Flexible Electrodes for Solid-State Supercapacitors.
  • Konferensbidrag (refereegranskat)abstract
    • Metal-organic frameworks (MOFs) and nanocellulose represent emerging and traditional porous materials, respectively. The combination of these two materials in specific ways could generate novel nanomaterials with integrated advantages and versatile functionalities. This study outlines the development of hierarchical porous and conductive nanosheets based on zeolitic imidazolate framework-67 (ZIF-67, a Co-based MOF) templated Co-Ni layered double hydroxide (LDH) nanocages, Cladophora cellulose (CC) nanofibers, and multi-walled carbon nanotubes (CNTs). The strategy relies on evenly interweaving the hollow Co-Ni LDH nanocages with CC nanofibers and CNTs. Benefiting from the flexibility of nanocellulose, the electrochemical activity of the LDH structure, and the high conductivity of CNTs, the LDH-CC-CNT nanosheets can be used as flexible and foldable electrodes for supercapacitors. The electrodes are associated with high areal capacitance of up to 1979 mF cm−2 at a potential scan rate of 1 mV s−1. A flexible, foldable, and all-solid-state asymmetric supercapacitor (ASC) is assembled from LDH-CC-CNT and CC-CNT electrodes with PVA/KOH gel. The entire device has an areal capacitance of 168 mF cm−2 and an energy density of 0.6 mWh cm−3 (60 μWh cm−2), at a power density of 8.0 mW cm−3 (0.8 mW cm−2). These promising results demonstrate the potential of using MOFs and sustainable cellulose in flexible, foldable electronic energy-storage devices.
  •  
9.
  •  
10.
  • Zhou, Shengyang, et al. (författare)
  • A mechanically robust spiral fiber with ionic-electronic coupling for multimodal energy harvesting
  • 2024
  • Ingår i: Materials Horizons. - : ROYAL SOC CHEMISTRY. - 2051-6347 .- 2051-6355.
  • Tidskriftsartikel (refereegranskat)abstract
    • Wearable electronics are some of the most promising technologies with the potential to transform many aspects of human life such as smart healthcare and intelligent communication. The design of self-powered fabrics with the ability to efficiently harvest energy from the ambient environment would not only be beneficial for their integration with textiles, but would also reduce the environmental impact of wearable technologies by eliminating their need for disposable batteries. Herein, inspired by classical Archimedean spirals, we report a metastructured fiber fabricated by scrolling followed by cold drawing of a bilayer thin film of an MXene and a solid polymer electrolyte. The obtained composite fibers with a typical spiral metastructure (SMFs) exhibit high efficiency for dispersing external stress, resulting in simultaneously high specific mechanical strength and toughness. Furthermore, the alternating layers of the MXene and polymer electrolyte form a unique, tandem ionic-electronic coupling device, enabling SMFs to generate electricity from diverse environmental parameters, such as mechanical vibrations, moisture gradients, and temperature differences. This work presents a design rule for assembling planar architectures into robust fibrous metastructures, and introduces the concept of ionic-electronic coupling fibers for efficient multimodal energy harvesting, which have great potential in the field of self-powered wearable electronics. In this work, a concept of ionic-electronic coupling fibers by integrating a 2D MXene and a polymer electrolyte to fabricate spiral metastructures is proposed to realize multimodal power generation from various sources simultaneously.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy