SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhou Xueqin) "

Sökning: WFRF:(Zhou Xueqin)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hao, Jiaming, et al. (författare)
  • Optical metamaterial for polarization control
  • 2009
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 80:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design, characterization, and modeling of a specific optical metamaterial, and employ it to manipulate the light polarizations at optical frequencies. Experimental results reveal that the maximum polarization conversion efficiency, i.e., the energy portion converted from s to p polarization after reflection, can be as high as 96% at the wavelength of similar to 685 nm. Simulations and analytical results, which are in reasonable agreements with the experimental results, reveal that the underlying physics are governed by the particular electric and magnetic resonances in the optical metamaterial.
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  • Li, Yiyin, et al. (författare)
  • Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China
  • 2015
  • Ingår i: Review of Palaeobotany and Palynology. - 0034-6667. ; 216, s. 92-100
  • Tidskriftsartikel (refereegranskat)abstract
    • For model-based quantitative reconstructions of past vegetation cover on the scale of landscapes, pollen productivity estimates (PPEs) are key input parameters. In this study, we employed a random sampling strategy to collect moss polsters at 20 sites in Changbai Mountain, northeastern China. A detailed vegetation survey within 1000-m radius around each sampling point was carried out and digitized vegetation maps were used for, vegetation data compilation. A forest map at the scale of 1:25,000 was used to extract information about vegetation for the area between 1000 and 5000 m from each sampling point. Using the ERV (Extended R-Value) model, pollen productivity was estimated for Larix, Pinus, Juglans, Ulmus, Tilia, Betula and Fraxinus relative to Quercus. Estimates of pollen fall speeds for the eight taxa as well as the relevant source area of pollen (RSAP) were also obtained. Three different ERV sub-models were tested against the data. The sub-model 3 produced the best goodness of fit and the PPE values calculated with this sub-model show that BMA (5.04), Pinus (3.11), Juglans (1.94) and Ulmus (1.40) are high pollen producers with higher PPEs than Quercus while Fraxinus (0.76), Larix (0.30), Tilia (0.16) are low pollen producers compared to Quercus. The high pollen producers are all anemophilous species, while low pollen producing plants include both entomophilous, such as Fraxinus, Tilia and anemophilous species such as Larix. The estimated RSAP for the eight tree pollen taxa is about 2000-2500 m. (C) 2015 Elsevier B.V. All rights reserved.
  •  
5.
  • Wang, Mingyi, et al. (författare)
  • Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 581:7807, s. 184-
  • Tidskriftsartikel (refereegranskat)abstract
    • A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy