SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhou Yinhua) "

Sökning: WFRF:(Zhou Yinhua)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jarvis, Erich D., et al. (författare)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
2.
  • Zhang, Guojie, et al. (författare)
  • Comparative genomics reveals insights into avian genome evolution and adaptation
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1311-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
  •  
3.
  • Dyer, Aubrey L., et al. (författare)
  • A Vertically Integrated Solar-Powered Electrochromic Window for Energy Efficient Buildings
  • 2014
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlag. - 0935-9648 .- 1521-4095. ; 26:28, s. 4895-4900
  • Tidskriftsartikel (refereegranskat)abstract
    • A solution-processed self-powered polymer electrochromic/photovoltaic (EC/PV) device is realized by vertically integrating two transparent PV cells with an ECD. The EC/PV cell is a net energy positive dual functional device, which can be reversibly switched between transparent and colored states by PV cells for regulating incoming sunlight through windows. The two PV cells can individually, or in pairs, generate electricity.
  •  
4.
  • Hu, Kaibo, et al. (författare)
  • Highly selective recovery of rare earth elements from mine wastewater by modifying kaolin with phosphoric acid
  • 2023
  • Ingår i: Separation and Purification Technology. - : Elsevier. - 1383-5866 .- 1873-3794. ; 309
  • Tidskriftsartikel (refereegranskat)abstract
    • Recovery of rare earth elements (REEs) from mine wastewater is essential for maintaining rare earth reserves and sustainable application of REEs. In the present study, we prepared a phosphoric acid modified kaolin (P-K) adsorbent by a simple mechanochemical process for the selective recovery of REEs from rare earth wastewater. The impacts of phosphoric acid dosage, milling duration, initial pH, temperature, initial ion concentration, and adsorbent dosage on the selective adsorption of REEs were investigated. The findings demonstrate that the adsorption of REEs by P-K follows pseudo-second-order kinetic model and the Langmuir isotherm model, and is dominated by chemical adsorption, with a maximum adsorption capacity of 19.82 mg/g at 50 ℃. Additionally, in an original mine wastewater, the recovery rate of REEs can reach more than 90%, whereas the adsorption rates of calcium, magnesium and, ammonia nitrogen (whose concentration is 18 times that of REEs) are nearly zero, indicating that P-K has extremely high selectivity for REEs. Furthermore, the feedstock solution containing 40 mg/L of REEs may be concentrated to 3510 mg/L following enrichment treatment, and 99.9% of the REEs are eluted using a low concentration of hydrochloric acid. The findings illustrate that P-K has a wide range of potential applications in the treatment of rare earth industrial effluents.
  •  
5.
  • Jin, Yingzhi, et al. (författare)
  • Laminated Free Standing PEDOT:PSS Electrode for Solution Processed Integrated Photocapacitors via Hydrogen-Bond Interaction
  • 2017
  • Ingår i: ADVANCED MATERIALS INTERFACES. - : WILEY. - 2196-7350. ; 4:23
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a novel lamination method employing hydrogen-bond interaction to assemble a highly conductive free standing poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film as a common electrode is demonstrated in a solution processed metal-free foldable integrated photocapacitor (IPC) composed of a monolithic organic solar cell (OSC) and a capacitor. The highlights of the work are:(1) micrometer free standing PEDOT:PSS electrode is successfully laminated onto a relatively large area (1 cm(2)) OSCs; (2) a free standing capacitor based on the PEDOT:PSS electrode is achieved; (3) the IPC demonstrates an overall efficiency of 2% and an energy storage efficiency of 58%, which is comparable with those of IPCs based on metallic common electrodes; (4) the novel lamination method for PEDOT:PSS electrode enables free standing PEDOT:PSS broad applications in solution processed flexible organic electronics, especially tandem or/and integrated organic electronic devices. Furthermore, the IPC is foldable with excellent cycling stability (no decay after 100 recycles at 1 mA cm(-2)). These results indicate that free standing PEDOT:PSS film is a promising candidate as common electrodes for IPCs to break the restrictions of metal electrodes. The demonstrated lamination method will greatly extend the applications of PEDOT:PSS electrodes to large area flexible organic electronic devices.
  •  
6.
  • Jin, Yingzhi, et al. (författare)
  • Solution-processed solar-charging power units made of organic photovoltaic modules and asymmetric super-capacitors
  • 2021
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 118:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic photovoltaics with the properties of flexibility, portability, and printability are ideal candidates for low-power-consumption electronics such as the Internet of Things under indoor light conditions. In this work, an all solution-processed integrated photocapacitor (IPC) consisting of an organic photovoltaic module (OPVM) and an asymmetric super-capacitor (ASC) is demonstrated. The OPVM poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b ]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1, 2-c:4,5-c ]dithiophene-4,8-dione)] (PBDB-T) : 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2 ,3 d ]-s-indaceno[1,2-b:5,6-b-]-dithiophene (ITIC) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode delivers a high power conversion efficiency of 6.7% with a voltage of 4.3 V (1 Sun). The ASC based on PEDOT:PSS and Ti3C2Tx electrodes shows a wide operation window of 1.5 V in the aqueous electrolyte with a high energy density of 28.7 mu W h cm(-2). Consequently, the IPC achieves a high output voltage of 3 V and outstanding overall efficiency of 6.0% (45 000 lx), which shows excellent stability as the solar-charging power unit under room light (500 lx). Synergizing energy harvest and storage in a solution-processed robust, lightweight, low-cost organic IPC enables this solar-charging power unit wide potential applications in low-power-consumption portable electronics.
  •  
7.
  • Li, Zaifang, et al. (författare)
  • A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS
  • 2018
  • Ingår i: Advanced Electronic Materials. - : Wiley-VCH Verlagsgesellschaft. - 2199-160X. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A free-standing high-output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (approximate to 2500 S cm(-1)) structure-ordered poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS-PEDOT:PSS) with a Seebeck coefficient of 20.6 mu V K-1, an in-plane thermal conductivity of 0.64 W m(-1) K-1, and a peak power factor of 107 mu W K-2 m(-1) at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 +/- 18.7 mu W cm(-2), which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out-of-plane thermal conductivity of 0.27 W m(-1) K-1, and free-standing feature indicates the potential to integrate the FS-PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human bodys heat. In addition to the high power factor, the high thermal stability of the FS-PEDOT:PSS films up to 250 degrees C is confirmed by in situ temperature-dependent X-ray diffraction and grazing incident wide angle X-ray scattering, which makes the FS-PEDOT:PSS films promising candidates for thermoelectric applications.
  •  
8.
  • Nie, Shisong, et al. (författare)
  • High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells
  • 2023
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 28:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic electrodes are desirable for the rapid development of flexible organic electronics. In this article, a plastic electrode has been prepared by employing traditional conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and plastic substrate polyethersulfone (PES). The completed electrode (Denote as HC-PEDOT:PSS) treated by 80% concentrated sulfuric acid (H2SO4) possesses a high electrical conductivity of over 2673 S/cm and a high transmittance of over 90% at 550 nm. The high conductivity is attributed to the regular arrangement of PEDOT molecules, which has been proved by the X-ray diffraction characterization. Temperature-dependent conductivity measurement reveals that the HC-PEDOT:PSS possesses both semiconducting and metallic properties. The binding force and effects between the PEDOT and PEI are investigated in detail. All plastic solar cells with a classical device structure of PES/HC-PEDOT:PSS/PEI/P3HT:ICBA/EG-PEDOT:PSS show a PCE of 4.05%. The ITO-free device with a structure of Glass/HC-PEDOT:PSS/Al4083/PM6:Y6/PDINO/Ag delivers an open-circuit voltage (V-OC) of 0.81 V, short-circuit current (J(SC) ) of 23.5 mA/cm(2), fill factor (FF) of 0.67 and a moderate power conversion efficiency (PCE) of 12.8%. The above results demonstrate the HC-PEDOT:PSS electrode is a promising candidate for all-plastic solar cells and ITO-free organic solar cells.
  •  
9.
  • Xiong, Sixing, et al. (författare)
  • 12.5% Flexible Nonfullerene Solar Cells by Passivating the Chemical Interaction Between the Active Layer and Polymer Interfacial Layer
  • 2019
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 31:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonfullerene (NF) organic solar cells (OSCs) have been attracting significant attention in the past several years. It is still challenging to achieve high-performance flexible NF OSCs. NF acceptors are chemically reactive and tend to react with the low-temperature-processed low-work-function (low-WF) interfacial layers, such as polyethylenimine ethoxylated (PEIE), which leads to the S shape in the current-density characteristics of the cells. In this work, the chemical interaction between the NF active layer and the polymer interfacial layer of PEIE is deactivated by increasing its protonation. The PEIE processed from aqueous solution shows more protonated N+ than that processed from isopropyl alcohol solution, observed from X-ray photoelectron spectroscopy. NF solar cells (active layer: PCE-10:IEICO-4F) with the protonated PEIE interfacial layer show an efficiency of 13.2%, which is higher than the reference cells with a ZnO interlayer (12.6%). More importantly, the protonated PEIE interfacial layer processed from aqueous solution does not require a further thermal annealing treatment (only processing at room temperature). The room-temperature processing and effective WF reduction enable the demonstration of high-performance (12.5%) flexible NF OSCs.
  •  
10.
  • Zhang, Fengling, et al. (författare)
  • Development of polymer-fullerene solar cells
  • 2016
  • Ingår i: NATIONAL SCIENCE REVIEW. - : OXFORD UNIV PRESS. - 2095-5138 .- 2053-714X. ; 3:2, s. 222-239
  • Forskningsöversikt (refereegranskat)abstract
    • Global efforts and synergetic interdisciplinary collaborations on solution-processed bulk-heterojunction polymer solar cells (PSCs or OPVs) made power conversion efficiencies over 10% possible. The rapid progress of the field is credited to the synthesis of a large number of novel polymers with specially tunable optoelectronic properties, a better control over the nano-morphology of photoactive blend layers, the introduction of various effective interfacial layers, new device architectures and a deeper understanding of device physics. We will review the pioneering materials for polymer-fullerene solar cells and trace the progress of concepts driving their development. We discuss the evolution of morphology control, interfacial layers and device structures fully exploring the potential of photoactive materials. In order to guide a further increase in power conversion efficiency of OPV, the current understanding of the process of free charge carrier generation and the origin of the photovoltage is summarized followed by a perspective on how to overcome the limitations for industrializing PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy