SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhuang Zhen W.) "

Sökning: WFRF:(Zhuang Zhen W.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Christoffersson, Gustav, et al. (författare)
  • Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency
  • 2012
  • Ingår i: Angiogenesis. - : Springer Science and Business Media LLC. - 0969-6970 .- 1573-7209. ; 15:3, s. 469-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor (VEGF)-A regulates angiogenesis, vascular morphology and permeability by signaling through its receptor VEGFR-2. The Shb adapter protein has previously been found to relay certain VEGFR-2 dependent signals and consequently vascular physiology and structure was assessed in Shb knockout mice. X-ray computed tomography of vessels larger than 24 mm diameter (micro-CT) after contrast injection revealed an increased frequency of 48-96 µm arterioles in the hindlimb calf muscle in Shb knockout mice. Intravital microscopy of the cremaster muscle demonstrated a less regular vasculature with fewer branch points and increased vessel tortuosity, changes that led to an increased blood flow velocity. Reduced in vivo angiogenesis was observed in Shb knockout MatrigelTM plugs. Unlike the wild-type situation, VEGF-A did not provoke a dissociation of VE-cadherin from adherens junctions in Shb knockout venules. The reduced angiogenesis and altered properties of junctions had consequences for two patho-physiological responses to arterial occlusion: vascular permeability was reduced in the Shb knockout cremaster muscle after ligation of one supplying artery and heat-induced blood flow determined by Laser-Doppler measurements was decreased in the hindlimb after ligation of the femoral artery. Consequently, the Shb knockout mouse exhibited structural and functional (angiogenesis and vascular permeability) vascular abnormalities that have implications for understanding the function of VEGF-A under physiological conditions.
  •  
7.
  • Zhuang, Zhen W., et al. (författare)
  • Arteriogenesis: Noninvasive quantification with multi-detector row CT angiography and three-dimensional volume rendering in rodents
  • 2006
  • Ingår i: Radiology. - : Radiological Society of North America (RSNA). - 0033-8419 .- 1527-1315. ; 240:3, s. 698-707
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE:To evaluate two-dimensional (2D) multi-detector row computed tomographic (CT) angiography and three-dimensional (3D) volume rendering for depiction of patterns of arterial growth and quantification of blood vessel density and volume.MATERIALS AND METHODS:The institutional animal care and use committee approved this study. The right femoral artery and its branches were ligated and excised in 16 inbred Lewis rats; animals were randomly assigned to receive 70 microL Dulbecco's modified Eagle's medium (DMEM) or 1.5 x 10(7) bone marrow-derived mononuclear cells (BMC) from isogenic donor rats in 70 microL DMEM. At 2 weeks, CT angiography was performed with injection of 0.45 mL barium sulfate suspension at 0.7 mL/min, followed by silver staining. Number of blood vessels, area, mean area, volume, and blood vessel size distribution derived from digitally subtracted 2D CT angiographic sections were quantified; 3D images were reconstructed. Two-way analysis of variance and paired and unpaired Student t tests were performed.RESULTS:CT angiography showed two patterns of arterial growth: collateral arterial formation and branching arteriogenesis. Two-way analysis of variance indicated that differences within subjects (ischemic vs nonischemic legs) and between subjects (BMC vs DMEM treatment) were significant for total blood vessel area, total blood vessel volume, and mean of blood vessel area (P < .001). In the BMC group, there were significantly more arteries (mean, 241.6 +/- 77.0 [standard deviation] vs 196.4 +/- 75.2, P = .028), but mean cross-sectional area of these arteries was smaller in ischemic versus nonischemic legs (5.4 mm(2) +/- 1.2 vs 6.8 mm(2) +/- 1.3, P = .006). Total arterial area and volume did not differ significantly between ischemic and nonischemic legs.CONCLUSION:BMC injection had a substantial effect on arteriogenesis, with normalization of total arterial area and volume in the BMC group; this effect was successfully depicted.
  •  
8.
  • Åkerblom, Björn, et al. (författare)
  • Heterogeneity among RIP-Tag2 insulinomas allows vascular endothelial growth factor-A independent tumor expansion as revealed by studies in Shb mutant mice : implications for tumor angiogenesis
  • 2012
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 6:3, s. 333-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The Shb adapter protein is a signaling intermediate that operates downstream of vascular endothelial growth factor receptor-2 (VEGFR-2) in endothelial cells. The Shb knockout mouse displays a dysfunctional microvasculature and impaired growth of subcutaneously implanted tumor cells. We decided to investigate tumor growth and angiogenesis in the absence of Shb in an inheritable tumor model, the RIP-Tag2 mouse, which produces insulinomas in a manner highly dependent on de novo angiogenesis. We observed a reduced tumor incidence and burden in both RIP-Tag2 Shb-/- and RIP-Tag2 Shb+/- mice. This correlated with a reduced microvascular density, measured as percentage of insulinoma area positive for CD31 staining, and altered vascular morphology. However, treatment with a VEGF-A blocking antibody was without effect on the Shb mutant tumor volume whereas it significantly inhibited tumor volume in the wild-type mice, suggesting that in mice with reduced Shb expression tumor angiogenesis was primarily sustained by VEGF-A independent pathway(s). This notion was further substantiated by gene expression analysis of angiogenic markers showing reduced VEGF-A expression in Shb deficient tumors. Considerable heterogeneity with respect to the gene expression profiles of other angiogenic markers and the signal-transduction characteristics was observed between different tumors, suggesting that multiple “rescue” pathways could be operating. The numbers of invasive tumors or metastases were unchanged in the Shb mutant. It is concluded that the Shb mutant background reduces tumor frequency by chronically suppressing VEGF-A dependent angiogenesis. However, VEGF-A independent angiogenesis supports a significant degree of tumor expansion in Shbdeficient mice, indicating heterogeneity in the mechanisms by which tumor expansion is promoted. Interference with Shb signaling may provide novel means for future cancer therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy