SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zichi Julien) "

Sökning: WFRF:(Zichi Julien)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Branny, Artur, et al. (författare)
  • X-Ray Induced Secondary Particle Counting With Thin NbTiN Nanowire Superconducting Detector
  • 2021
  • Ingår i: IEEE transactions on applied superconductivity (Print). - : Institute of Electrical and Electronics Engineers (IEEE). - 1051-8223 .- 1558-2515. ; 31:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterized the performance of abiased superconducting nanowire to detect X-ray photons. The device, made of a 10 nm thin NbTiN film and fabricated on a dielectric substrate (SiO2, Nb3O5) detected 1000 times larger signal than anticipated from direct X-ray absorption. We attributed this effect to X-ray induced generation of secondary particles in the substrate. The enhancement corresponds to an increase in the flux by the factor of 3.6, relative to a state-of-the-art commercial X-ray silicon drift detector. The detector exhibited 8.25 ns temporal recovery time and 82 ps timing resolution, measured using optical photons. Our results emphasize the importance of the substrate in superconducting X-ray single photon detectors.
  •  
2.
  • Chang, J., et al. (författare)
  • Detecting telecom single photons with (99.5(-2.07)(+0.5))% system detection efficiency and high time resolution
  • 2021
  • Ingår i: APL Photonics. - : AIP Publishing. - 2378-0967. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing. The ability of superconducting nanowire single photon detectors (SNSPDs) to detect single photons with unprecedented efficiency, short dead time, and high time resolution over a large frequency range enabled major advances in quantum optics. However, combining near-unity system detection efficiency (SDE) with high timing performance remains an outstanding challenge. In this work, we fabricated novel SNSPDs on membranes with 99.5-(2.07)(+0.5)% SDE at 1350 nm with 32 ps timing jitter (using a room-temperature amplifier), and other detectors in the same batch showed 94%-98% SDE at 1260-1625 nm with 15-26 ps timing jitter (using cryogenic amplifiers). The SiO2/Au membrane enables broadband absorption in small SNSPDs, offering high detection efficiency in combination with high timing performance. With low-noise cryogenic amplifiers operated in the same cryostat, our efficient detectors reach a timing jitter in the range of 15-26 ps. We discuss the prime challenges in optical design, device fabrication, and accurate and reliable detection efficiency measurements to achieve high performance single photon detection. As a result, the fast developing fields of quantum information science, quantum metrology, infrared imaging, and quantum networks will greatly benefit from this far-reaching quantum detection technology.
  •  
3.
  • Chang, Jin, et al. (författare)
  • Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution
  • 2019
  • Ingår i: Applied Optics. - : Optical Society of America. - 1559-128X .- 2155-3165. ; 58:36, s. 9803-9807
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but have yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multimode-fiber-coupled detectors and fabricated high-performance 20 mu m, 25 mu m, and 50 mu m diameter detectors targeted for visible, near-infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We achieved over 80% system efficiency and <20 ps timing jitter for 20 mu m SNSPDs. Also, we realized 70% system efficiency and <20 ps timing jitter for 50 mu m SNSPDs. The high-efficiency multimode-fiber-coupled SNSPDs with unparalleled time resolution will benefit various quantum optics experiments and applications in the future.
  •  
4.
  •  
5.
  • Chi, Xiaoming, et al. (författare)
  • Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity
  • 2018
  • Ingår i: Optics Letters. - : OPTICAL SOC AMER. - 0146-9592 .- 1539-4794. ; 43:20, s. 5017-5020
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate superconducting nanowire single-photon detectors (SNSPDs) based on a fractal design of the nanowires to reduce the polarization sensitivity of detection efficiency. We patterned niobium titanium nitride thin films into Peano curves with a linewidth of 100 nm and integrated the nanowires with optical microcavities to enhance their optical absorption. At a base temperature of 2.6 K, the fractal SNSPD exhibited a polarization-maximum device efficiency of 67% and a polarization-minimum device efficiency of 61% at a wavelength of 1550 nm. Therefore, the polarization sensitivity, defined as their ratio, was 1.1, lower than the polarization sensitivity of the SNSPDs in the meander design. The reduced polarization sensitivity of the detector could be maintained for higher-order spatial modes in multimode optical fibers and could tolerate misalignment between the optical mode and the detector. This fractal design is applicable to both amorphous and polycrystalline materials that are commonly used for making SNSPDs.
  •  
6.
  •  
7.
  • Elshaari, Ali W., et al. (författare)
  • Dispersion engineering of superconducting waveguides for multi-pixel integration of single-photon detectors
  • 2020
  • Ingår i: APL Photonics. - : American Institute of Physics (AIP). - 2378-0967. ; 5:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We use dispersion engineering to control the signal propagation speed in the feed lines of superconducting single-photon detectors. Using this technique, we demonstrate time-division-multiplexing of two-pixel detectors connected with a slow-RF transmission line, all realized using planar geometry requiring a single lithographic step. Through studying the arrival time of detection events in each pixel vs the fabricated slow-RF coplanar waveguide length, we extract a delay of 1.7 ps per 1 mu m of propagation, corresponding to detection signal speeds of similar to 0.0019c. Our results open an important avenue to explore the rich ideas of dispersion engineering and metamaterials for superconducting detector applications.
  •  
8.
  • Gourgues, Ronan, et al. (författare)
  • Controlled integration of selected detectors and emitters in photonic integrated circuits
  • 2019
  • Ingår i: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 27:3, s. 3710-3716
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of superconducting nanowire single-photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high-performance detectors. Here we overcome the yield limitation by controlled coupling of photonic channels to pre-selected detectors based on measuring critical current, timing resolution, and detection efficiency. As a proof of concept of our approach, we demonstrate a hybrid on-chip full-transceiver consisting of a deterministically integrated detector coupled to a selected nanowire quantum dot through a filtering circuit made of a silicon nitride waveguide and a ring resonator filter, delivering 100 dB suppression of the excitation laser. In addition, we perform extensive testing of the detectors before and after integration in the photonic circuit and show that the high performance of the superconducting nanowire detectors, including timing jitter down to 23 +/- 3 ps, is maintained. Our approach is fully compatible with wafer-level automated testing in a cleanroom environment. 
  •  
9.
  • Gourgues, Ronan, et al. (författare)
  • Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K
  • 2019
  • Ingår i: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 27:17, s. 24601-24609
  • Tidskriftsartikel (refereegranskat)abstract
    • We experimentally investigate the performance of NbTiN superconducting nanowire single photon detectors above the base temperature of a conventional Gifford-McMahon cryocooler (2.5 K). By tailoring design and thickness (8-13 nm) of the detectors, high performance, high operating temperature, single-photon detection from the visible to telecom wavelengths are demonstrated. At 4.3 K, a detection efficiency of 82 % at 785 nm wavelength and a timing jitter of 30 +/- 0.3 ps are achieved. In addition, for 1550 nm and similar operating temperature we measured a detection efficiency as high as 64 %. Finally, we show that at temperatures up to 7 K, unity internal efficiency is maintained for the visible spectrum. Our work is particularly important to allow for the large scale implementation of superconducting single photon detectors in combination with heat sources such as free-space optical windows, cryogenic electronics, microwave sources and active optical components for complex quantum optical experiments and bio-imaging.
  •  
10.
  • Gu, C., et al. (författare)
  • Fractal superconducting nanowire single-photon detectors with low polarization sensitivity
  • 2018
  • Ingår i: Optics InfoBase Conference Papers. - : Optical Society of America. - 9781557528209
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrated a fractal superconducting nanowire single-photon detector and achieved 42% device efficiency and 1.04 polarization sensitivity. The low polarization sensitivity can be maintained for higher-order spatial modes in few-mode optical fibers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy