SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zidek Karel) "

Sökning: WFRF:(Zidek Karel)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellah, Mohamed, et al. (författare)
  • Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1−xS1−y quantum dots
  • 2017
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 9:34, s. 12503-12508
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast fluorescence spectroscopy was used to investigate the hole injection in CdxSeyZn1-xS1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrodinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.
  •  
2.
  • Alvarez, Sol Gutierrez, et al. (författare)
  • Charge Carrier Diffusion Dynamics in Multisized Quaternary Alkylammonium-Capped CsPbBr3 Perovskite Nanocrystal Solids
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:37, s. 44742-44750
  • Tidskriftsartikel (refereegranskat)abstract
    • CsPbBr3 quantum dots (QDs) are promising candidates for optoelectronic devices. The substitution of oleic acid ( OA) and oleylamine ( OLA) capping agents with a quaternary alkylammonium such as di-dodecyl dimethyl ammonium bromide (DDAB) has shown an increase in external quantum efficiency (EQE) from 0.19% (OA/OLA) to 13.4% (DDAB) in LED devices. The device performance significantly depends on both the diffusion length and the mobility of photoexcited charge carriers in QD solids. Therefore, we investigated the charge carrier transport dynamics in DDAB-capped CsPbBr3 QD solids by constructing a bi-sized QD mixture film. Charge carrier diffusion can be monitored by quantitatively varying the ratio between two sizes of QDs, which varies the mean free path of the carriers in each QD cluster. Excited-state dynamics of the QD solids obtained from ultrafast transient absorption spectroscopy reveals that the photogenerated electrons and holes are difficult to diffuse among small-sized QDs (4 nm) due to the strong quantum confinement. On the other hand, both photoinduced electrons and holes in large-sized QDs (10 nm) would diffuse toward the interface with the small-sized QDs, followed by a recombination process. Combining the carrier diffusion study with a Monte Carlo simulation on the QD assembly in the mixture films, we can calculate the diffusion lengths of charge carriers to be similar to 239 +/- 16 nm in 10 nm CsPbBr3 QDs and the mobility values of electrons and holes to be 2.1 (+/- 0.1) and 0.69 (+/- 0.03) cm(2)/V s, respectively. Both parameters indicate an efficient charge carrier transport in DDAB-capped QD films, which rationalized the perfect performance of their LED device application.
  •  
3.
  • Amarotti, Edoardo, et al. (författare)
  • Direct Visualization of Confinement and Many-Body Correlation Effects in 2D Spectroscopy of Quantum Dots
  • Ingår i: Advanced Optical Materials. - 2195-1071.
  • Tidskriftsartikel (refereegranskat)abstract
    • The size tunable color of colloidal semiconductor quantum dots (QDs) is probably the most elegant illustration of the quantum confinement effect. As explained by the simple “particle-in-a-box” model, the transition energies between the levels increase when the “box” becomes smaller. To investigate quantum confinement effects, typically a well-defined narrow size distribution of the nanoparticles is needed. In this contribution, how coherent electronic two-dimensional spectroscopy (2DES) can directly visualize the quantum size effect in a sample with broad size distribution of QDs is demonstrated. The method is based on two features of the 2DES – the ability to resolve inhomogeneous broadening and the capability to reveal correlations between the states. In QD samples, inhomogeneous spectral broadening is mainly caused by the size distribution and leads to elongated diagonal peaks of the spectra. Since the cross peaks correlate the energies of two states, they allow drawing conclusions about the size dependence of the corresponding states. It is also found that the biexciton binding energy changes between 3 and 8 meV with the QD size. Remarkably, the size dependence is non-monotonic with a clear minimum.
  •  
4.
  • Bamini, Sesha, et al. (författare)
  • Time-resolved terahertz spectroscopy reveals the influence of charged sensitizing quantum dots on the electron dynamics in ZnO
  • 2017
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 19:8, s. 6006-6012
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinitiated charge carrier dynamics in ZnO nanoparticles sensitized by CdSe quantum dots is studied using transient absorption spectroscopy and time-resolved terahertz spectroscopy. The evolution of the transient spectra shows that electron injection occurs in a two-step process, where the formation of a charge transfer state (occurring in several picoseconds) is followed by its dissociation within tens of picoseconds. The photoconductivity of electrons injected into the ZnO nanoparticles is lower than that of charges photogenerated directly in ZnO. We conclude that the motion of injected electrons in ZnO nanoparticles is strongly influenced by their interaction with positive charges left in the sensitizing quantum dots.
  •  
5.
  • Chen, Junsheng, et al. (författare)
  • Photostability of the Oleic Acid-Encapsulated Water-Soluble CdxSeyZn1-xS1-y Gradient Core-Shell Quantum Dots
  • 2017
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 2:5, s. 1922-1929
  • Tidskriftsartikel (refereegranskat)abstract
    • Composite systems where quantum dots (QDs) are combined with other nanomaterials (e.g., gold nanorods) in aqueous solutions have attracted broad attention - both for their potential in applications and for studies of fundamental processes. However, high-quality QDs are typically prepared in organic solvents, and the transfer of QDs to an aqueous phase is needed to create the desired QD composites. Photostability of the transferred QDs - both the steady-state and photo-induced dynamic properties - is essential for studying the processes in the composites and for their applications. We present a detailed study of the photostability of aqueous CdxSeyZn1-xS1-y gradient core-shell QDs obtained by various approaches using linker exchange and surfactant encapsulation. Beside the steady-state photoluminescence (PL) emission stability, we also study changes in the PL decay. From the variety of the studied samples, the water-soluble QDs encapsulated by a double layer of oleic acid show superior properties, that is, stable PL emission and PL decay under continuous light or pulsed-laser light irradiation. We demonstrate that the double-layer encapsulation of QDs can be used to create QDs-metal nanoparticle composites.
  •  
6.
  • Chen, Junsheng, et al. (författare)
  • Size-And Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr3 Perovskite Quantum Dots
  • 2017
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:10, s. 2316-2321
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have recently emerged as promising light emitting materials. CsPbBr3 QDs have also been demonstrated as stable two-photon-pumped lasing medium. However, the reported two photon absorption (TPA) cross sections for these QDs differ by an order of magnitude. Here we present an in-depth study of the TPA properties of CsPbBr3 QDs with mean size ranging from 4.6 to 11.4 nm. By using femtosecond transient absorption (TA) spectroscopy we found that TPA cross section is proportional to the linear one photon absorption. The TPA cross section follows a power law dependence on QDs size with exponent 3.3 ± 0.2. The empirically obtained power-law dependence suggests that the TPA process through a virtual state populates exciton band states. The revealed power-law dependence and the understanding of TPA process are important for developing high performance nonlinear optical devices based on CsPbBr3 nanocrystals.
  •  
7.
  • Chen, Junsheng, et al. (författare)
  • Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core-shell quantum dots
  • 2016
  • Ingår i: Journal of Physics: Condensed Matter. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 28:25
  • Tidskriftsartikel (refereegranskat)abstract
    • In a composite film of Cdx Sey Zn1-x S1-y gradient core-shell quantum dots (QDs) and gold nanorods (NRs), the optical properties of the QDs are drastically affected by the plasmonic nanoparticles. We provide a careful study of the two-step formation of the film and its morphology. Subsequently we focus on QD luminescence photoactivation - a process induced by photochemical changes on the QD surface. We observe that even a sparse coverage of AuNRs can completely inhibit the photoactivation of the QDs' emission in the film. We demonstrate that the inhibition can be accounted for by a rapid energy transfer between QDs and AuNRs. Finally, we propose that the behavior of emission photoactivation can be used as a signature to distinguish between energy and electron transfer in the QD-based materials.
  •  
8.
  • Christensson, Niklas, et al. (författare)
  • Origin of the Bathochromic Shift of Astaxanthin in Lobster Protein: 2D Electronic Spectroscopy Investigation of beta-Crustacyanin
  • 2013
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 117:38, s. 11209-11219
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on ultrafast spectroscopy study of beta-crustacyanin, the carotenoprotein responsible for the coloration of the lobster shell. beta-Crustacyanin is formed by two closely positioned astaxanthin molecules encapsulated in protein. The 2D electronic spectroscopy together with two-color pump-probe was applied to investigate the electronic structure, the excited-state dynamics, and the influence of the excitonic interaction between the two carotenoids in beta-crustacyanin. By using the similar to 20 Is laser pulses tuned to absorption bands of the S-0-S-2 and S-1-S-n transitions of carotenoids, we were able to trace full excitation relaxation dynamics, starting with S-2-S-1 relaxation on the similar to 30 fs time scale and finishing with the ground-state recovery of 3.2 ps. Superimposed on the relaxation dynamics in the 2D spectra, we observed long-lived beating signals at the characteristic frequencies of astaxanthin vibrational modes. We assign these oscillations to the ground-state vibrational wavepacket dynamics. All major features of the 2ll spectra, including amplitude and phase maps of the long-lived oscillations, were reproduced by employing the exciton-vibronic model. Consistent modeling of all optical properties of beta-crustacyanin (including absorption and circular dichroism spectra) points to the relatively weak coupling between the two astaxanthin molecules (similar to 250 cm(-1)). This implies that the excitonic coupling provides insignificant contribution to the bathochromic shift in beta-crustacyanin. We discuss the origin of the shift and propose that it is caused by two major effects: conformational changes of astaxanthin molecules (increase in effective conjugation length) together with increased charge-transfer character of the S-2 state. We put the bathochromic shift in the broad perspective of other "blue" carotenoids properties.
  •  
9.
  • Dall'Osto, Luca, et al. (författare)
  • Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes
  • 2017
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-0278. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. We conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. This latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.
  •  
10.
  • Denk, Ondřej, et al. (författare)
  • Compressive imaging of transient absorption dynamics on the femtosecond timescale
  • 2019
  • Ingår i: Optics Express. - 1094-4087. ; 27:7, s. 10234-10246
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond spectroscopy is an important tool used for tracking rapid photoinduced processes in a variety of materials. To spatially map the processes in a sample would substantially expand the method’s capabilities. This is, however, difficult to achieve, due to the necessity of using low-noise detection and maintaining feasible data acquisition time. Here, we demonstrate realization of an imaging pump-probe setup, featuring sub-100 fs temporal resolution, by using a straightforward modification of a standard pump-probe technique, which uses a randomly structured probe beam. The structured beam, made by a diffuser, enabled us to computationally reconstruct the maps of transient absorption dynamics based on the concept of compressed sensing. We demonstrate the setup’s functionality in two proof-of-principle experiments, where we achieve spatial resolution of 20 μm. The presented concept provides a feasible route to imaging, by using the pump-probe technique and ultrafast spectroscopy in general.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy