SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zieger Paul 1978 ) "

Sökning: WFRF:(Zieger Paul 1978 )

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
2.
  • Duplessis, P., et al. (författare)
  • Highly Hygroscopic Aerosols Facilitate Summer and Early-Autumn Cloud Formation at Extremely Low Concentrations Over the Central Arctic Ocean
  • 2024
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic clouds are sensitive to atmospheric particles since these are sometimes in such low concentrations that clouds cannot always form under supersaturated water vapor conditions. This is especially true in the late summer, when aerosol concentrations are generally very low in the high Arctic. The environment changes rapidly around freeze-up as the open waters close and snow starts accumulating on ice. We investigated droplet formation during eight significant fog events in the central Arctic Ocean, north of 80 degrees, from August 12 to 19 September 2018 during the Arctic Ocean 2018 expedition onboard the icebreaker Oden. Calculated hygroscopicity parameters (kappa) for the entire study were very high (up to kappa = 0.85 +/- 0.13), notably after freeze-up, suggesting that atmospheric particles were very cloud condensation nuclei (CCN)-active. At least one of the events showed that surface clouds were able to form and persist for at least a couple hours at aerosol concentrations less than 10 cm-3, which was previously suggested to be the minimum for cloud formation. Among these events that were considered limited in CCN, effective radii were generally larger than in the high CCN cases. In some of the fog events, droplet residuals particles did not reactivate under supersaturations up to 0.95%, suggesting either in-droplet reactions decreased hygroscopicity, or an ambient supersaturation above 1%. These results provide insight into droplet formation during the clean late-summer and fall of the high Arctic with limited influence from continental sources. The Arctic atmosphere can be very clean in the summer, to the point that clouds cannot form because there are insufficient particles present for the water vapor to condense upon. This has important implications for the radiation budget, which is highly dependent on clouds. As part of the Arctic Ocean 2018 expedition in the central Arctic Ocean near the North Pole, we investigated the ability of particles to turn into droplets throughout the whole cruise (August 12 to 19 September 2018), and during eight significant fog events. Overall, we found that after the sea ice started to freeze, the particles were more capable of turning into cloud droplets. During one fog event, we observed fog droplets forming when the particle concentrations were lower than the limit that past studies had suggested that fog/cloud could be sustained. During several fog events, the dried fog droplets did not always re-form droplets when exposed to cloud-like conditions, which suggests that the original droplets must have formed under extreme conditions. Our results show that in the summer/fall in the high Arctic, liquid droplets sometimes form under unusual circumstances that are likely not always considered in models. Aerosol hygroscopicity was greater after surface water freeze-up than beforeHygroscopicity of Aitken mode particles was generally greater than accumulation mode particlesCloud droplet effective radii during aerosol-limited periods were larger generally than periods with higher aerosol concentrations
  •  
3.
  • Gramlich, Yvette, 1993-, et al. (författare)
  • Impact of Biomass Burning on Arctic Aerosol Composition
  • 2024
  • Ingår i: ACS Earth and Space Chemistry. - 2472-3452.
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions from biomass burning (BB) occurring at midlatitudes can reach the Arctic, where they influence the remote aerosol population. By using measurements of levoglucosan and black carbon, we identify seven BB events reaching Svalbard in 2020. We find that most of the BB events are significantly different to the rest of the year (nonevents) for most of the chemical and physical properties. Aerosol mass and number concentrations are enhanced by up to 1 order of magnitude during the BB events. During BB events, the submicrometer aerosol bulk composition changes from an organic- and sulfate-dominated regime to a clearly organic-dominated regime. This results in a significantly lower hygroscopicity parameter κ for BB aerosol (0.4 ± 0.2) compared to nonevents (0.5 ± 0.2), calculated from the nonrefractory aerosol composition. The organic fraction in the BB aerosol showed no significant difference for the O:C ratios (0.9 ± 0.3) compared to the year (0.9 ± 0.6). Accumulation mode particles were present during all BB events, while in the summer an additional Aitken mode was observed, indicating a mixture of the advected air mass with locally produced particles. BB tracers (vanillic, homovanillic, and hydroxybenzoic acid, nitrophenol, methylnitrophenol, and nitrocatechol) were significantly higher when air mass back trajectories passed over active fire regions in Eastern Europe, indicating agricultural and wildfires as sources. Our results suggest that the impact of BB on the Arctic aerosol depends on the season in which they occur, and agricultural and wildfires from Eastern Europe have the potential to disturb the background conditions the most. 
  •  
4.
  • Gramlich, Yvette, 1993-, et al. (författare)
  • Revealing the chemical characteristics of Arctic low-level cloud residuals – in situ observations from a mountain site
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:12, s. 6813-6834
  • Tidskriftsartikel (refereegranskat)abstract
    • The role aerosol chemical composition plays in Arctic low-level cloud formation is still poorly understood. In this study we address this issue by combining in situ observations of the chemical characteristics of cloud residuals (dried liquid cloud droplets or ice crystals) and aerosol particles from the Zeppelin Observatory in Ny-Ålesund, Svalbard (approx. 480 m a.s.l.). These measurements were part of the 1-year-long Ny-Ålesund Aerosol and Cloud Experiment 2019–2020 (NASCENT). To obtain the chemical composition of cloud residuals at molecular level, we deployed a Filter Inlet for Gases and AEROsols coupled to a Chemical Ionization Mass Spectrometer (FIGAERO-CIMS) with iodide as the reagent ion behind a ground-based counterflow virtual impactor (GCVI). The station was enshrouded in clouds roughly 15 % of the time during NASCENT, out of which we analyzed 14 cloud events between December 2019 and December 2020. During the entire year, the composition of the cloud residuals shows contributions from oxygenated organic compounds, including organonitrates, and traces of the biomass burning tracer levoglucosan. In summer, methanesulfonic acid (MSA), an oxidation product of dimethyl sulfide (DMS), shows large contributions to the sampled mass, indicating marine natural sources of cloud condensation nuclei (CCN) and ice nucleating particle (INP) mass during the sunlit part of the year. In addition, we also find contributions of the inorganic acids nitric acid and sulfuric acid, with outstanding high absolute signals of sulfuric acid in one cloud residual sample in spring and one in late summer (21 May and 12 September 2020), probably caused by high anthropogenic sulfur emissions near the Barents Sea and Kara Sea. During one particular cloud event, on 18 May 2020, the air mass origin did not change before, during, or after the cloud. We therefore chose it as a case study to investigate cloud impact on aerosol physicochemical properties. We show that the overall chemical composition of the organic aerosol particles was similar before, during, and after the cloud, indicating that the particles had already undergone one or several cycles of cloud processing before being measured as residuals at the Zeppelin Observatory and/or that, on the timescales of the observed cloud event, cloud processing of the organic fraction can be neglected. Meanwhile, there were on average fewer particles but relatively more in the accumulation mode after the cloud. Comparing the signals of sulfur-containing compounds of cloud residuals with aerosols during cloud-free conditions, we find that sulfuric acid had a higher relative contribution to the cloud residuals than to aerosols during cloud-free conditions, but we did not observe an increase in particulate MSA due to the cloud. Overall, the chemical composition, especially of the organic fraction of the Arctic cloud residuals, reflected the overall composition of the general aerosol population well. Our results thus suggest that most aerosols can serve as seeds for low-level clouds in the Arctic.
  •  
5.
  • Heslin-Rees, Dominic, 1993-, et al. (författare)
  • Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
  • 2024
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2059-2075
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated long-term changes using a harmonised 22-year data set of aerosol light absorption measurements, in conjunction with air mass history and aerosol source analysis. The measurements were performed at Zeppelin Observatory, Svalbard, from 2002 to 2023. We report a statistically significant decreasing long-term trend for the light absorption coefficient. However, the last 8 years of 2016–2023 showed a slight increase in the magnitude of the light absorption coefficient for the Arctic haze season. In addition, we observed an increasing trend in the single-scattering albedo from 2002 to 2023. Five distinct source regions, representing different transport pathways, were identified. The trends involving air masses from the five regions showed decreasing absorption coefficients, except for the air masses from Eurasia. We show that the changes in the occurrences of each transport pathway cannot explain the reductions in the absorption coefficient observed at the Zeppelin station. An increase in contributions of air masses from more marine regions, with lower absorption coefficients, is compensated for by an influence from high-emission regions. The proportion of air masses en route to Zeppelin, which have been influenced by active fires, has undergone a noticeable increase starting in 2015. However, this increase has not impacted the long-term trends in the concentration of light-absorbing aerosol. Along with aerosol optical properties, we also show an increasing trend in accumulated surface precipitation experienced by air masses en route to the Zeppelin Observatory. We argue that the increase in precipitation, as experienced by air masses arriving at the station, can explain a quarter of the long-term reduction in the light absorption coefficient. We emphasise that meteorological conditions en route to the Zeppelin Observatory are critical for understanding the observed trends.
  •  
6.
  • Kommula, S. M., et al. (författare)
  • Effect of Long-Range Transported Fire Aerosols on Cloud Condensation Nuclei Concentrations and Cloud Properties at High Latitudes
  • 2024
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 51:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Active vegetation fires in south-eastern (SE) Europe resulted in a notable increase in the number concentration of aerosols and cloud condensation nuclei (CCN) particles at two high latitude locations—the SMEAR IV station in Kuopio, Finland, and the Zeppelin Observatory in Svalbard, high Arctic. During the fire episode aerosol hygroscopicity κ slightly increased at SMEAR IV and at the Zeppelin Observatory κ decreased. Despite increased κ in high CCN conditions at SMEAR IV, the aerosol activation diameter increased due to the decreased supersaturation with an increase in aerosol loading. In addition, at SMEAR IV during the fire episode, in situ measured cloud droplet number concentration (CDNC) increased by a factor of ∼7 as compared to non-fire periods which was in good agreement with the satellite observations (MODIS, Terra). Results from this study show the importance of SE European fires for cloud properties and radiative forcing in high latitudes.
  •  
7.
  • Lapere, Remy, et al. (författare)
  • Polar Aerosol Atmospheric Rivers : Detection, Characteristics, and Potential Applications
  • 2024
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosols play a key role in polar climate, and are affected by long-range transport from the mid-latitudes, both in the Arctic and Antarctic. This work investigates poleward extreme transport events of aerosols, referred to as polar aerosol atmospheric rivers (p-AAR), leveraging the concept of atmospheric rivers (AR) which signal extreme transport of moisture. Using reanalysis data, we build a detection catalog of p-AARs for black carbon, dust, sea salt and organic carbon aerosols, for the period 1980-2022. First, we describe the detection algorithm, discuss its sensitivity, and evaluate its validity. Then, we present several extreme transport case studies, in the Arctic and in the Antarctic, illustrating the complementarity between ARs and p-AARs. Despite similarities in transport pathways during co-occurring AR/p-AAR events, vertical profiles differ depending on the species, and large-scale transport patterns show that moisture and aerosols do not necessarily originate from the same areas. The complementarity between AR and p-AAR is also evidenced by their long-term characteristics in terms of spatial distribution, seasonality and trends. p-AAR detection, as a complement to AR, can have several important applications for better understanding polar climate and its connections to the mid-latitudes. The extreme transport of aerosol-containing air masses, from the mid-latitudes to the polar regions, can be characterized and quantified by leveraging polar Aerosol Atmospheric Rivers (p-AARs). This is similar to the Atmospheric Rivers (ARs) which carry large amounts of water to the poles and affect the overall stability of polar ecosystems. In this work, we establish a detection algorithm for p-AARs and evaluate it for different well-known aerosol intrusions or AR events. The areas most affected by p-AARs are described, their trends are investigated and we discuss the potential applications of p-AAR detection for a better understanding of polar climate. A catalog of polar aerosol atmospheric rivers (p-AAR) is provided for 1980-2022 by adapting an atmospheric river (AR) detection schemeImportant p-AAR events, representing rapid poleward transport of aerosol-enriched air masses, are presentedCombining AR and p-AAR can improve our understanding of the links between mid- and polar-latitudes, in the past, present and future climate
  •  
8.
  • Lapere, Rémy, et al. (författare)
  • The Representation of Sea Salt Aerosols and Their Role in Polar Climate Within CMIP6
  • 2023
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 128:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural aerosols and their interactions with clouds remain an important uncertainty within climate models, especially at the poles. Here, we study the behavior of sea salt aerosols (SSaer) in the Arctic and Antarctic within 12 climate models from CMIP6. We investigate the driving factors that control SSaer abundances and show large differences based on the choice of the source function, and the representation of aerosol processes in the atmosphere. Close to the poles, the CMIP6 models do not match observed seasonal cycles of surface concentrations, likely due to the absence of wintertime SSaer sources such as blowing snow. Further away from the poles, simulated concentrations have the correct seasonality, but have a positive mean bias of up to one order of magnitude. SSaer optical depth is derived from the MODIS data and compared to modeled values, revealing good agreement, except for winter months. Better agreement for aerosol optical depth than surface concentration may indicate a need for improving the vertical distribution, the size distribution and/or hygroscopicity of modeled polar SSaer. Source functions used in CMIP6 emit very different numbers of small SSaer, potentially exacerbating cloud-aerosol interaction uncertainties in these remote regions. For future climate scenarios SSP126 and SSP585, we show that SSaer concentrations increase at both poles at the end of the 21st century, with more than two times mid-20th century values in the Arctic. The pre-industrial climate CMIP6 experiments suggest there is a large uncertainty in the polar radiative budget due to SSaer.Plain Language Summary Aerosols emitted from the ocean, such as sea salt particles (aerosols), are critical for the climate of polar regions. However, there is still uncertainty in their representation in climate models. The purpose of this work is to evaluate the representation of sea salt aerosols (SSaer) in the Arctic and Antarctic in a recent model inter-comparison initiative, and to assess the consequences for our understanding of present-day and future polar climate. We find that the models disagree between them and with observations from ground stations and from space. This suggests that the formulation of sea salt emissions in global models is not adapted for polar regions. With sea ice retreat, SSaer will most likely increase in the future, which makes addressing the current uncertainty an important next step for the scientific community.
  •  
9.
  • Motos, Ghislain, et al. (författare)
  • Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:21, s. 13941-13956
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed “Arctic amplification”. The response of low-level clouds to changing aerosol characteristics throughout the year is therefore an important driver of Arctic change that currently lacks sufficient constraints. As such, during the NASCENT campaign (Ny-Ålesund AeroSol Cloud ExperimeNT) extending over a full year from October 2019 to October 2020, microphysical properties of aerosols and clouds were studied at the Zeppelin station (475 m a.s.l.), Ny-Ålesund, Svalbard, Norway. Particle number size distributions obtained from differential mobility particle sizers as well as chemical composition derived from filter samples and an aerosol chemical speciation monitor were analyzed together with meteorological data, in particular vertical wind velocity. The results were used as input to a state-of-the-art cloud droplet formation parameterization to investigate the particle sizes that can activate to cloud droplets, the levels of supersaturation that can develop, the droplet susceptibility to aerosol and the role of vertical velocity. We evaluate the parameterization and the droplet numbers calculated through a droplet closure with in-cloud in situ measurements taken during nine flights over 4 d. A remarkable finding is that, for the clouds sampled in situ, closure is successful in mixed-phase cloud conditions regardless of the cloud glaciation fraction. This suggests that ice production through ice–ice collisions or droplet shattering may have explained the high ice fraction, as opposed to rime splintering that would have significantly reduced the cloud droplet number below levels predicted by warm-cloud activation theory. We also show that pristine-like conditions during fall led to clouds that formed over an aerosol-limited regime, with high levels of supersaturation (generally around 1 %, although highly variable) that activate particles smaller than 20 nm in diameter. Clouds formed in the same regime in late spring and summer, but aerosol activation diameters were much larger due to lower cloud supersaturations (ca. 0.5 %) that develop because of higher aerosol concentrations and lower vertical velocities. The contribution of new particle formation to cloud formation was therefore strongly limited, at least until these newly formed particles started growing. However, clouds forming during the Arctic haze period (winter and early spring) can be limited by updraft velocity, although rarely, with supersaturation levels dropping below 0.1 % and generally activating larger particles (20 to 200 nm), including pollution transported over a long range. The relationship between updraft velocity and the limiting cloud droplet number agrees with previous observations of various types of clouds worldwide, which supports the universality of this relationship.
  •  
10.
  • Pereira Freitas, Gabriel, 1993- (författare)
  • Bioaerosols and their importance for low-level Arctic clouds
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Bioaerosols are microorganisms or functional parts of them or other biological matter suspended in air. Examples are bacteria, viruses, pollen, spores, or smaller plant debris. In the atmosphere, bioaerosols can play various functional roles, such as facilitating the spread of genetic material. Moreover, they can play an important role in climate by serving as ice nucleating particles and thus participating in cloud formation. Bioaerosols might play a significant role in a changing Arctic, where aerosol concentrations can be very low, and where natural as well as anthropogenic aerosol sources are subject to drastic changes due to climate change. In the Arctic, aerosols and clouds are prominent actors in climate by mediating short- and long-wave radiation interactions, which are further complicated by the presence of high-albedo surfaces such as sea ice. Thus, constraining the sources of aerosols and their interaction with clouds is key to understanding the Arctic climate and the changes it has been and will undergo.In this work, we used a single-particle instrument to differentiate bioaerosols from other particles on the basis of their fluorescence and light-scattering signal. In the Baltic Sea, we found that bioaerosols are at least 1 in every 104 coarse particles emitted by sea spray. Their temporal emission pattern was not directly correlated with biological tracers, such as chlorophyll; instead, their emission was modulated by the transition between different water masses.The same technique was then applied to a one-year measurement campaign at an Arctic mountain top observatory as part of a greater aerosol-cloud interaction campaign. The recorded seasonal cycle of bioaerosol concentrations peaked in summer and was most likely related to regional terrestrial sources, as its appearance coincided with a decrease in snow cover and an increase in vegetation activity. Moreover, bioaerosols were found to drive the concentration of high-temperature ice nucleating particles, even in winter. In the third study, the importance of bioaerosols serving as cloud seeds was investigated by directly measuring the concentration of bioaerosols within cloud residuals.The presented findings help to elucidate the contribution of bioaerosols to coarse-mode particles for marine and Arctic environments, while also providing a direct link between bioaerosols and clouds. Furthermore, we also provide the first direct observations of bioaerosols involved in cloud formation in the Arctic, along with their possible contribution to the prevalence of mixed-phase clouds in the beginning and end of summer. Thus, these results contribute to a better understanding of atmospheric (bio-)aerosol-cloud-interactions processes in the vulnerable Arctic environment but are also valuable for further developments of Earth system models that include ice nucleating and/or bioaerosol particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy