SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ziehn T.) "

Sökning: WFRF:(Ziehn T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaminski, T., et al. (författare)
  • The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges
  • 2013
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953. ; 118:4, s. 1414-1426
  • Forskningsöversikt (refereegranskat)abstract
    • We present the concept of the Carbon Cycle Data Assimilation System and describe its evolution over the last two decades from an assimilation system around a simple diagnostic model of the terrestrial biosphere to a system for the calibration and initialization of the land component of a comprehensive Earth system model. We critically review the capability of this modeling framework to integrate multiple data streams, to assess their mutual consistency and with the model, to reduce uncertainties in the simulation of the terrestrial carbon cycle, to provide, in a traceable manner, reanalysis products with documented uncertainty, and to assist the design of the observational network. We highlight some of the challenges we met and experience we gained, give recommendations for operating the system, and suggest directions for future development.
  •  
2.
  • Kemp, S., et al. (författare)
  • Limiting the parameter space in the Carbon Cycle Data Assimilation System (CCDAS)
  • 2014
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 7:4, s. 1609-1619
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial ecosystem models are employed to calculate the sources and sinks of carbon dioxide between land and atmosphere. These models may be heavily parameterised. Where reliable estimates are unavailable for a parameter, it remains highly uncertain; uncertainty of parameters can substantially contribute to overall model output uncertainty. This paper builds on the work of the terrestrial Carbon Cycle Data Assimilation System (CCDAS), which, here, assimilates atmospheric CO2 concentrations to optimise 19 parameters of the underlying terrestrial ecosystem model (Biosphere Energy Transfer and Hydrology scheme, BETHY). Previous experiments have shown that the identified minimum may contain non-physical parameter values. One way to combat this problem is to use constrained optimisation and so avoid the optimiser searching non-physical regions. Another technique is to use penalty terms in the cost function, which are added when the optimisation searches outside of a specified region. The use of parameter transformations is a further method of avoiding this problem, where the optimisation is carried out in a transformed parameter space, thus ensuring that the optimal parameters at the minimum are in the physical domain. We compare these different methods of achieving meaningful parameter values, finding that the parameter transformation method shows consistent results and that the other two provide no useful results.
  •  
3.
  • Ziehn, T, et al. (författare)
  • Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes
  • 2011
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 4:4, s. 1011-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate modelling of the carbon cycle strongly depends on the parametrization of its underlying processes. The Carbon Cycle Data Assimilation System (CCDAS) can be used as an estimator algorithm to derive posterior parameter values and uncertainties for the Biosphere Energy Transfer and Hydrology scheme (BETHY). However, the simultaneous optimization of all process parameters can be challenging, due to the complexity and non-linearity of the BETHY model. Therefore, we propose a new concept that uses ensemble runs and the adjoint optimization approach of CCDAS to derive the full probability density function (PDF) for posterior soil carbon parameters and the net carbon flux at the global scale. This method allows us to optimize only those parameters that can be constrained best by atmospheric carbon dioxide (CO2) data. The prior uncertainties of the remaining parameters are included in a consistent way through ensemble runs, but are not constrained by data. The final PDF for the optimized parameters and the net carbon flux are then derived by superimposing the individual PDFs for each ensemble member. We find that the optimization with CCDAS converges much faster, due to the smaller number of processes involved. Faster convergence also gives us much increased confidence that we find the global minimum in the reduced parameter space.
  •  
4.
  • Ziehn, T, et al. (författare)
  • Investigating spatial differentiation of model parameters in a carbon cycle data assimilation system
  • 2011
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 25, s. 2021-2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Better estimates of the net exchange of CO(2) between the atmosphere and the terrestrial biosphere are urgently needed to improve predictions of future CO(2) levels in the atmosphere. The carbon cycle data assimilation system (CCDAS) offers the capability of inversion, while it is at the same time based on a process model that can be used independent of observational data. CCDAS allows the assimilation of atmospheric CO(2) concentrations into the terrestrial biosphere model BETHY, constraining its process parameters via an adjoint approach. Here, we investigate the effect of spatial differentiation of a universal carbon balance parameter of BETHY on posterior net CO(2) fluxes and their uncertainties. The parameter, beta, determines the characteristics of the slowly decomposing soil carbon pool and represents processes that are difficult to model explicitly. Two cases are studied with an assimilation period of 1979 to 2003. In the base case, there is a separate beta for each plant functional type (PFT). In the regionalization case, beta is differentiated not only by PFT, but also according to each of 11 large continental regions as used by the TransCom project. We find that the choice of spatial differentiation has a profound impact not only on the posterior (optimized) fluxes and their uncertainties, but even more so on the spatial covariance of the uncertainties. Differences are most pronounced in tropical regions, where observations are sparse. While regionalization leads to an improved fit to the observations by about 20% compared to the base case, we notice large spatial variations in the posterior net CO(2) flux on a grid cell level. The results illustrate the need for universal process formulations in global-scale atmospheric CO(2) inversion studies, at least as long as the observational network is too sparse to resolve spatial fluctuations at the regional scale.
  •  
5.
  • Ziehn, T., et al. (författare)
  • On the capability of Monte Carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models
  • 2012
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 26, s. 3025-3025
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial ecosystem models (TEMs) contain the coupling of many biogeochemical processes with a large number of parameters involved. In many cases those parameters are highly uncertain. In order to reduce those uncertainties, parameter estimation methods can be applied, which allow the model to be constrained against observations. We compare the performance and results of two such parameter estimation techniques - the Metropolis algorithm (MA) which is a Markov Chain Monte Carlo (MCMC) method and the adjoint approach as it is used in the Carbon Cycle Data Assimilation System (CCDAS). Both techniques are applied here to derive the posterior probability density function (PDF) for 19 parameters of the Biosphere Energy Transfer and Hydrology (BETHY) scheme. We also use the MA to sample the posterior parameter distribution from the adjoint inversion. This allows us to assess if the commonly made assumption in variational data assimilation, that everything is normally distributed, holds. The comparison of the posterior parameter PDF derived by both methods shows that in most cases an approximation of the PDF by a normal distribution as used by the adjoint approach is a valid assumption. The results also indicate that the global minimum has been identified by both methods for the given set up. However, the adjoint approach outperforms the MA by several orders of magnitude in terms of computational time. Both methods show good agreement in the PDF of estimated net carbon fluxes for the decades of the 1980s and 1990s.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy