SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zimmerman Barbara) "

Search: WFRF:(Zimmerman Barbara)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Liu, Ke, et al. (author)
  • X Chromosome Dose and Sex Bias in Autoimmune Diseases
  • 2016
  • In: Arthritis & Rheumatology. - : WILEY-BLACKWELL. - 2326-5191 .- 2326-5205. ; 68:5, s. 1290-1300
  • Journal article (peer-reviewed)abstract
    • Objective. More than 80% of autoimmune disease predominantly affects females, but the mechanism for this female bias is poorly understood. We suspected that an X chromosome dose effect accounts for this, and we undertook this study to test our hypothesis that trisomy X (47, XXX; occurring in similar to 1 in 1,000 live female births) would be increased in patients with female-predominant diseases (systemic lupus erythematosus [SLE], primary Sjogrens syndrome [SS], primary biliary cirrhosis, and rheumatoid arthritis [RA]) compared to patients with diseases without female predominance (sarcoidosis) and compared to controls. Methods. All subjects in this study were female. We identified subjects with 47, XXX using aggregate data from single-nucleotide polymorphism arrays, and, when possible, we confirmed the presence of 47, XXX using fluorescence in situ hybridization or quantitative polymerase chain reaction. Results. We found 47, XXX in 7 of 2,826 SLE patients and in 3 of 1,033 SS patients, but in only 2 of 7,074 controls (odds ratio in the SLE and primary SS groups 8.78 [95% confidence interval 1.67-86.79], P = 0.003 and odds ratio 10.29 [95% confidence interval 1.18-123.47], P = 0.02, respectively). One in 404 women with SLE and 1 in 344 women with SS had 47, XXX. There was an excess of 47, XXX among SLE and SS patients. Conclusion. The estimated prevalence of SLE and SS in women with 47, XXX was similar to 2.5 and similar to 2.9 times higher, respectively, than that in women with 46, XX and similar to 25 and similar to 41 times higher, respectively, than that in men with 46, XY. No statistically significant increase of 47, XXX was observed in other female-biased diseases (primary biliary cirrhosis or RA), supporting the idea of multiple pathways to sex bias in autoimmunity.
  •  
4.
  • Liu, Ke, et al. (author)
  • X Chromosome Dose and Sex Bias in Autoimmune Diseases : Increased 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome
  • 2016
  • In: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 68:5, s. 1290-1300
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE:More than 80% of autoimmune disease is female dominant, but the mechanism for this female bias is poorly understood. We suspected an X chromosome dose effect and hypothesized that trisomy X (47,XXX, 1 in ∼1,000 live female births) would be increased in female predominant diseases (e.g. systemic lupus erythematosus [SLE], primary Sjögren's syndrome [SS], primary biliary cirrhosis [PBC] and rheumatoid arthritis [RA]) compared to diseases without female predominance (sarcoidosis) and controls.METHODS:We identified 47,XXX subjects using aggregate data from single nucleotide polymorphism (SNP) arrays and confirmed, when possible, by fluorescent in situ hybridization (FISH) or quantitative polymerase chain reaction (q-PCR).RESULTS:We found 47,XXX in seven of 2,826 SLE and three of 1,033 SS female patients, but only in two of the 7,074 female controls (p=0.003, OR=8.78, 95% CI: 1.67-86.79 and p=0.02, OR=10.29, 95% CI: 1.18-123.47; respectively). One 47,XXX subject was present for ∼404 SLE women and ∼344 SS women. 47,XXX was present in excess among SLE and SS subjects.CONCLUSION:The estimated prevalence of SLE and SS in women with 47,XXX was respectively ∼2.5 and ∼2.9 times higher than in 46,XX women and ∼25 and ∼41 times higher than in 46,XY men. No statistically significant increase of 47,XXX was observed in other female-biased diseases (PBC or RA), supporting the idea of multiple pathways to sex bias in autoimmunity. This article is protected by copyright. All rights reserved.
  •  
5.
  • Markmann, James F., et al. (author)
  • Executive Summary of IPITA-TTS Opinion Leaders Report on the Future of beta-Cell Replacement
  • 2016
  • In: Transplantation. - 0041-1337 .- 1534-6080. ; 100:7, s. E25-E31
  • Research review (peer-reviewed)abstract
    • The International Pancreas and Islet Transplant Association (IPITA), in conjunction with the Transplantation Society (TTS), convened a workshop to consider the future of pancreas and islet transplantation in the context of potential competing technologies that are under development, including the artificial pancreas, transplantation tolerance, xenotransplantation, encapsulation, stem cell derived beta cells, beta cell proliferation, and endogenous regeneration. Separate workgroups for each topic and then the collective group reviewed the state of the art, hurdles to application, and proposed research agenda for each therapy that would allow widespread application. Herein we present the executive summary of this workshop that focuses on obstacles to application and the research agenda to overcome them; the full length article with detailed background for each topic is published as an online supplement to Transplantation.
  •  
6.
  •  
7.
  • Murray, Christopher J. L., et al. (author)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Journal article (peer-reviewed)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
8.
  • Sánchez Van Kammen, Mayte, et al. (author)
  • Characteristics and Outcomes of Patients with Cerebral Venous Sinus Thrombosis in SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia
  • 2021
  • In: JAMA Neurology. - : American Medical Association. - 2168-6149 .- 2168-6157. ; 78:11, s. 1314-1323
  • Journal article (peer-reviewed)abstract
    • Importance: Thrombosis with thrombocytopenia syndrome (TTS) has been reported after vaccination with the SARS-CoV-2 vaccines ChAdOx1 nCov-19 (Oxford-AstraZeneca) and Ad26.COV2.S (Janssen/Johnson & Johnson).Objective: To describe the clinical characteristics and outcome of patients with cerebral venous sinus thrombosis (CVST) after SARS-CoV-2 vaccination with and without TTS.Design, Setting, and Participants: This cohort study used data from an international registry of consecutive patients with CVST within 28 days of SARS-CoV-2 vaccination included between March 29 and June 18, 2021, from 81 hospitals in 19 countries. For reference, data from patients with CVST between 2015 and 2018 were derived from an existing international registry. Clinical characteristics and mortality rate were described for adults with (1) CVST in the setting of SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia, (2) CVST after SARS-CoV-2 vaccination not fulling criteria for TTS, and (3) CVST unrelated to SARS-CoV-2 vaccination.Exposures: Patients were classified as having TTS if they had new-onset thrombocytopenia without recent exposure to heparin, in accordance with the Brighton Collaboration interim criteria.Main Outcomes and Measures: Clinical characteristics and mortality rate.Results: Of 116 patients with postvaccination CVST, 78 (67.2%) had TTS, of whom 76 had been vaccinated with ChAdOx1 nCov-19; 38 (32.8%) had no indication of TTS. The control group included 207 patients with CVST before the COVID-19 pandemic. A total of 63 of 78 (81%), 30 of 38 (79%), and 145 of 207 (70.0%) patients, respectively, were female, and the mean (SD) age was 45 (14), 55 (20), and 42 (16) years, respectively. Concomitant thromboembolism occurred in 25 of 70 patients (36%) in the TTS group, 2 of 35 (6%) in the no TTS group, and 10 of 206 (4.9%) in the control group, and in-hospital mortality rates were 47% (36 of 76; 95% CI, 37-58), 5% (2 of 37; 95% CI, 1-18), and 3.9% (8 of 207; 95% CI, 2.0-7.4), respectively. The mortality rate was 61% (14 of 23) among patients in the TTS group diagnosed before the condition garnered attention in the scientific community and 42% (22 of 53) among patients diagnosed later.Conclusions and Relevance: In this cohort study of patients with CVST, a distinct clinical profile and high mortality rate was observed in patients meeting criteria for TTS after SARS-CoV-2 vaccination..
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13
Type of publication
journal article (12)
research review (1)
Type of content
peer-reviewed (13)
Author/Editor
Korsgren, Olle (2)
Alarcón-Riquelme, Ma ... (2)
Witte, Torsten (2)
Liu, Ke (2)
Nordmark, Gunnel (2)
Wahren-Herlenius, Ma ... (2)
show more...
Otonkoski, Timo (2)
Lessard, Christopher ... (2)
Kelly, Jennifer A. (2)
Kaufman, Kenneth M. (2)
Guthridge, Joel M. (2)
Edberg, Jeffrey C. (2)
Gilkeson, Gary S. (2)
James, Judith A. (2)
Kamen, Diane L. (2)
Kimberly, Robert P. (2)
Merrill, Joan T. (2)
Tsao, Betty P. (2)
Harley, John B. (2)
Gaffney, Patrick M. (2)
Wallace, Daniel J. (2)
Amos, Christopher I. (2)
Jonsson, Roland (2)
Salmon, Jane E (2)
Johnson, Paul (2)
Mariette, Xavier (2)
Bartlett, Stephen T. (2)
Markmann, James F. (2)
Hering, Bernhard J. (2)
Scharp, David (2)
Kay, Thomas W. H. (2)
Bromberg, Jonathan (2)
Odorico, Jon S. (2)
Weir, Gordon C. (2)
Bridges, Nancy (2)
Kandaswamy, Raja (2)
Stock, Peter (2)
Friend, Peter (2)
Gotoh, Mitsukazu (2)
Cooper, David K. C. (2)
Park, Chung-Gyu (2)
Stabler, Cherie (2)
Matsumoto, Shinichi (2)
Ludwig, Barbara (2)
Choudhary, Pratik (2)
Rickels, Michael R. (2)
Sykes, Megan (2)
Wood, Kathryn (2)
Kraemer, Kristy (2)
Hwa, Albert (2)
show less...
University
Karlstad University (7)
Uppsala University (3)
Umeå University (2)
University of Gothenburg (1)
Linköping University (1)
Chalmers University of Technology (1)
show more...
Karolinska Institutet (1)
Högskolan Dalarna (1)
show less...
Language
English (12)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (7)
Medical and Health Sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view