SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zimyanin Vitaly L.) "

Sökning: WFRF:(Zimyanin Vitaly L.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Günther, René, et al. (författare)
  • Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS
  • 2022
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.
  •  
2.
  • Freischmidt, Axel, et al. (författare)
  • A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis
  • 2021
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 144:4, s. 1214-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.
  •  
3.
  • Zimyanin, Vitaly L., et al. (författare)
  • Live cell imaging of ATP levels reveals metabolic compartmentalization within motoneurons and early metabolic changes in FUS ALS motoneurons
  • 2023
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy