SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zinger S) "

Sökning: WFRF:(Zinger S)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Manni, F, et al. (författare)
  • Hyperspectral Imaging for Glioblastoma Surgery: Improving Tumor Identification Using a Deep Spectral-Spatial Approach
  • 2020
  • Ingår i: Sensors (Basel, Switzerland). - : MDPI AG. - 1424-8220. ; 20:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D–2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D–2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Manni, F, et al. (författare)
  • Hyperspectral Imaging for Skin Feature Detection: Advances in Markerless Tracking for Spine Surgery
  • 2020
  • Ingår i: APPLIED SCIENCES-BASEL. - : MDPI AG. - 2076-3417. ; 10:12
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In spinal surgery, surgical navigation is an essential tool for safe intervention, including the placement of pedicle screws without injury to nerves and blood vessels. Commercially available systems typically rely on the tracking of a dynamic reference frame attached to the spine of the patient. However, the reference frame can be dislodged or obscured during the surgical procedure, resulting in loss of navigation. Hyperspectral imaging (HSI) captures a large number of spectral information bands across the electromagnetic spectrum, providing image information unseen by the human eye. We aim to exploit HSI to detect skin features in a novel methodology to track patient position in navigated spinal surgery. In our approach, we adopt two local feature detection methods, namely a conventional handcrafted local feature and a deep learning-based feature detection method, which are compared to estimate the feature displacement between different frames due to motion. To demonstrate the ability of the system in tracking skin features, we acquire hyperspectral images of the skin of 17 healthy volunteers. Deep-learned skin features are detected and localized with an average error of only 0.25 mm, outperforming the handcrafted local features with respect to the ground truth based on the use of optical markers.
  •  
7.
  •  
8.
  • Manni, F, et al. (författare)
  • Towards Optical Imaging for Spine Tracking without Markers in Navigated Spine Surgery
  • 2020
  • Ingår i: Sensors (Basel, Switzerland). - : MDPI AG. - 1424-8220. ; 20:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical navigation systems are increasingly used for complex spine procedures to avoid neurovascular injuries and minimize the risk for reoperations. Accurate patient tracking is one of the prerequisites for optimal motion compensation and navigation. Most current optical tracking systems use dynamic reference frames (DRFs) attached to the spine, for patient movement tracking. However, the spine itself is subject to intrinsic movements which can impact the accuracy of the navigation system. In this study, we aimed to detect the actual patient spine features in different image views captured by optical cameras, in an augmented reality surgical navigation (ARSN) system. Using optical images from open spinal surgery cases, acquired by two gray-scale cameras, spinal landmarks were identified and matched in different camera views. A computer vision framework was created for preprocessing of the spine images, detecting and matching local invariant image regions. We compared four feature detection algorithms, Speeded Up Robust Feature (SURF), Maximal Stable Extremal Region (MSER), Features from Accelerated Segment Test (FAST), and Oriented FAST and Rotated BRIEF (ORB) to elucidate the best approach. The framework was validated in 23 patients and the 3D triangulation error of the matched features was < 0.5 mm. Thus, the findings indicate that spine feature detection can be used for accurate tracking in navigated surgery.
  •  
9.
  • Tedersoo, L., et al. (författare)
  • Best practices in metabarcoding of fungi: From experimental design to results
  • 2022
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 31:10, s. 2769-2795
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full-length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy