SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zouni Athina) "

Sökning: WFRF:(Zouni Athina)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alonso-Mori, Roberto, et al. (författare)
  • Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:47, s. 19103-19107
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this probe-before-destroy approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. K beta(1,3) XES spectra of Mn-II and Mn-2(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to > 100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.
  •  
2.
  • Bhowmick, Asmit, et al. (författare)
  • Going around the Kok cycle of the water oxidation reaction with femtosecond X-ray crystallography
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10:6, s. 642-655
  • Forskningsöversikt (refereegranskat)abstract
    • The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.
  •  
3.
  • Bhowmick, Asmit, et al. (författare)
  • Structural evidence for intermediates during O2 formation in photosystem II
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 629-636
  • Tidskriftsartikel (refereegranskat)abstract
    • In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O–O bond formation chemistry. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok’s photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok’s water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition, disappears or relocates in parallel with Yz reduction starting at approximately 700 μs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1–Mn4 distance, occurs at around 1,200 μs, signifying the presence of a reduced intermediate, possibly a bound peroxide.
  •  
4.
  • Chatterjee, Ruchira, et al. (författare)
  • Structural isomers of the S-2 state in photosystem II : do they exist at room temperature and are they important for function?
  • 2019
  • Ingår i: Physiologia Plantarum. - : Wiley-Blackwell. - 0031-9317 .- 1399-3054. ; 166:1, s. 60-72
  • Tidskriftsartikel (refereegranskat)abstract
    • In nature, an oxo‐bridged Mn4CaO5 cluster embedded in photosystem II (PSII), a membrane‐bound multi‐subunit pigment protein complex, catalyzes the water oxidation reaction that is driven by light‐induced charge separations in the reaction center of PSII. The Mn4CaO5 cluster accumulates four oxidizing equivalents to enable the four‐electron four‐proton catalysis of two water molecules to one dioxygen molecule and cycles through five intermediate S‐states, S0 – S4 in the Kok cycle. One important question related to the catalytic mechanism of the oxygen‐evolving complex (OEC) that remains is, whether structural isomers are present in some of the intermediate S‐states and if such equilibria are essential for the mechanism of the O‐O bond formation. Here we compare results from electron paramagnetic resonance (EPR) and X‐ray absorption spectroscopy (XAS) obtained at cryogenic temperatures for the S2state of PSII with structural data collected of the S1, S2 and S3 states by serial crystallography at neutral pH (∼6.5) using an X‐ray free electron laser at room temperature. While the cryogenic data show the presence of at least two structural forms of the S2 state, the room temperature crystallography data can be well‐described by just one S2 structure. We discuss the deviating results and outline experimental strategies for clarifying this mechanistically important question.
  •  
5.
  • Cheah, Mun Hon, et al. (författare)
  • Assessment of the manganese cluster’s oxidation state via photoactivation of photosystem II microcrystals
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:1, s. 141-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as “low oxidation (LO)” and “high oxidation (HO)” models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster’s oxidation states.
  •  
6.
  • Fransson, Thomas, et al. (författare)
  • Effects of x-ray free-electron laser pulse intensity on the Mn K beta(1,3) x-ray emission spectrum in photosystem II-A case study for metalloprotein crystals and solutions
  • 2021
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and K beta x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the K beta XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn K beta(1,3) XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from & SIM;5 x 10(15) to 5 x 10(17) W/cm(2) at a pulse length of & SIM;35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.& nbsp;
  •  
7.
  • Fransson, Thomas, et al. (författare)
  • Effects of x-ray free-electron laser pulse intensity on the Mn K β 1,3x-ray emission spectrum in photosystem II - A case study for metalloprotein crystals and solutions
  • 2021
  • Ingår i: Structural Dynamics. - : American Institute of Physics (AIP). - 2329-7778. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kβ x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kβ XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kβ1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.
  •  
8.
  • Fuller, Franklin D, et al. (författare)
  • Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
  • 2017
  • Ingår i: Nature Methods. - : Macmillan Publishers Ltd.. - 1548-7091 .- 1548-7105. ; 14, s. 443-449
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.
  •  
9.
  •  
10.
  • Hattne, Johan, et al. (författare)
  • Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers
  • 2014
  • Ingår i: Nature Methods. - 1548-7091 .- 1548-7105. ; 11:5, s. 545-548
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (3)
annan publikation (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zouni, Athina (29)
Yachandra, Vittal K. (27)
Yano, Junko (27)
Kern, Jan (26)
Bergmann, Uwe (22)
Sauter, Nicholas K. (19)
visa fler...
Alonso-Mori, Roberto (19)
Messinger, Johannes (17)
Ibrahim, Mohamed (16)
Brewster, Aaron S. (15)
Adams, Paul D. (15)
Hussein, Rana (14)
Chatterjee, Ruchira (14)
Cheah, Mun Hon (13)
Sokaras, Dimosthenis (12)
Seibert, M Marvin (11)
Messinger, Johannes, ... (11)
Dobbek, Holger (11)
Sierra, Raymond G. (10)
Simon, Philipp S. (10)
Bogacz, Isabel (10)
Fuller, Franklin D. (10)
Tran, Rosalie (9)
Zwart, Petrus H. (9)
Boutet, Sébastien (9)
Bhowmick, Asmit (9)
Zhang, Miao (9)
Fransson, Thomas (9)
Chernev, Petko (8)
Weng, Tsu-Chien (8)
Hattne, Johan (8)
Laksmono, Hartawan (8)
Hellmich, Julia (8)
Echols, Nathaniel (8)
Glatzel, Pieter (8)
Young, Iris D. (8)
Gildea, Richard J. (7)
Lassalle-Kaiser, Ben ... (7)
Fry, Alan R. (7)
Bogan, Michael J. (7)
Williams, Garth J. (7)
Koglin, Jason E. (7)
Kim, In-Sik (7)
Schafer, Donald W. (6)
Sellberg, Jonas (6)
Grosse-Kunstleve, Ra ... (6)
Miahnahri, Alan (6)
White, William E. (6)
Holton, James M. (6)
Makita, Hiroki (6)
visa färre...
Lärosäte
Uppsala universitet (25)
Umeå universitet (23)
Stockholms universitet (7)
Kungliga Tekniska Högskolan (2)
Lunds universitet (1)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy