SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zrenner B) "

Sökning: WFRF:(Zrenner B)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kohl, S, et al. (författare)
  • CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia
  • 2005
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813. ; 13:3, s. 302-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Achromatopsia is a congenital, autosomal recessively inherited disorder characterized by a lack of color discrimination, low visual acuity (<0.2), photophobia, and nystagmus. Mutations in the genes for CNGA3, CNGB3, and GNAT2 have been associated with this disorder. Here, we analyzed the spectrum and prevalence of CNGB3 gene mutations in a cohort of 341 independent patients with achromatopsia. In 163 patients, CNGB3 mutations could be identified. A total of 105 achromats carried apparent homozygous mutations, 44 were compound (double) heterozygotes, and 14 patients had only a single mutant allele. The derived CNGB3 mutation spectrum comprises 28 different mutations including 12 nonsense mutations, eight insertions and/or deletions, five putative splice site mutations, and three missense mutations. Thus, the majority of mutations in the CNGB3 gene result in significantly altered and/or truncated polypeptides. Several mutations were found recurrently, in particular a 1 bp deletion, c.1148delC, which accounts for over 70% of all CNGB3 mutant alleles. In conclusion, mutations in the CNGB3 gene are responsible for approximately 50% of all patients with achromatopsia. This indicates that the CNGB3/ACHM3 locus on chromosome 8q21 is the major locus for achromatopsia in patients of European origin or descent.
  •  
2.
  •  
3.
  • Farinelli, Pietro, et al. (författare)
  • DNA methylation and differential gene regulation in photoreceptor cell death.
  • 2014
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP.
  •  
4.
  • Sancho-Pelluz, J., et al. (författare)
  • Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration
  • 2008
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 38:3, s. 253-269
  • Forskningsöversikt (refereegranskat)abstract
    • Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy