SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zrinzo Ludvic) "

Sökning: WFRF:(Zrinzo Ludvic)

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zrinzo, Ludvic, et al. (författare)
  • Stereotactic localization of the human pedunculopontine nucleus : atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization.
  • 2008
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 131:Pt 6, s. 1588-98
  • Tidskriftsartikel (refereegranskat)abstract
    • The pedunculopontine nucleus (PPN) is a promising new target for deep brain stimulation (DBS) in parkinsonian patients with gait disturbance and postural instability refractory to other treatment modalities. This region of the brain is unfamiliar territory to most functional neurosurgeons. This paper reviews the anatomy of the human PPN and describes novel, clinically relevant methods for the atlas-based and MRI-based localization of the nucleus. These two methods of PPN localization are evaluated and compared on stereotactic MRI data acquired from a diverse group of 12 patients undergoing implantation of deep brain electrodes at sites other than the PPN. Atlas-based coordinates of the rostral and caudal PPN poles in relation to fourth ventricular landmarks were established by amalgamating information sourced from two published human brain atlases. These landmarks were identified on acquired T1 images and atlas-derived coordinates used to plot the predicted PPN location on all 24 sides. Images acquired using a specifically modified, proton-density MRI protocol were available for each patient and were spatially fused to the T1 images. This widely available and rapid protocol provided excellent definition between gray and white matter within the region of interest. Together with an understanding of the regional anatomy, direct localization of the PPN was possible on all 24 sides. The coordinates for each directly localized nucleus were measured in relation to third and fourth ventricular landmarks. The mean (SD) of the directly localized PPN midpoints was 6.4 mm (0.5) lateral, 3.5 mm (1.0) posterior and 11.4 mm (1.2) caudal to the posterior commissure in the anterior commissure-posterior commissure plane. For the directly localized nucleus, there was similar concordance for the rostral pole of the PPN in relation to third and fourth ventricular landmarks (P>0.05). For the caudal PPN pole, fourth ventricular landmarks provided greater concordance with reference to the anteroposterior coordinate (P<0.001). There was a significant difference between localization of the PPN poles as predicted by atlas-based coordinates and direct MRI localization. This difference affected mainly the rostrocaudal coordinates; the mean lateral and anteroposterior coordinates of the directly localized PPN poles were within 0.5 mm of the atlas-based predicted values. Our findings provide simple, rapid and precise methods that are of clinical relevance to the atlas-based and direct stereotactic localization of the human PPN. Direct MRI localization may allow greater individual accuracy than that afforded by atlas-based coordinates when localizing the human PPN and may be relevant to groups evaluating the clinical role of PPN DBS.
  •  
2.
  • Zrinzo, Ludvic, et al. (författare)
  • Targeting of the pedunculopontine nucleus by an MRI-guided approach : a cadaver study
  • 2011
  • Ingår i: Journal of neural transmission. - Wien : Springer. - 0300-9564 .- 1435-1463. ; 118:10, s. 1487-1495
  • Tidskriftsartikel (refereegranskat)abstract
    • Laboratory evidence suggests that the pedunculopontine nucleus (PPN) plays a central role in the initiation and maintenance of gait. Translational research has led to reports on deep brain stimulation (DBS) of the rostral brainstem in parkinsonian patients. However, initial clinical results appear to be rather variable. Possible factors include patient selection and the wide variability in anatomical location of implanted electrodes. Clinical studies on PPN DBS efficacy would, therefore, benefit from an accurate and reproducible method of stereotactic localization of the nucleus. The present study evaluates the anatomical accuracy of a specific protocol for MRI-guided stereotactic targeting of the PPN in a human cadaver. Imaging at 1.5 and 9.4 T confirmed electrode location in the intended region as defined anatomically by the surrounding fiber tracts. The spatial relations of each electrode track to the nucleus were explored by subsequent histological examination. This confirmed that the neuropil surrounding each electrode track contained scattered large neurons morphologically consistent with those of the subnucleus dissipatus and compactus of the PPN. The results support the accuracy of the described specific MR imaging protocol.
  •  
3.
  •  
4.
  • Zrinzo, Ludvic, et al. (författare)
  • The peripeduncular nucleus : a novel target for deep brain stimulation?
  • 2007
  • Ingår i: NeuroReport. - 0959-4965 .- 1473-558X. ; 18:12, s. 1301-2
  • Tidskriftsartikel (refereegranskat)abstract
    • The pedunculopontine nucleus, a promising new target for deep brain stimulation in Parkinson's disease, straddles the pontomesencephalic junction--unfamiliar territory to most functional neurosurgeons. This contribution reviews the anatomy of the pedunculopontine and peripeduncular nuclei. Given the reported findings of Mazzone et al. in NeuroReport, the authors postulate that the peripeduncular nucleus might be of previously unexpected clinical relevance.
  •  
5.
  • Akbarian-Tefaghi, Ladan, et al. (författare)
  • Refining the Deep Brain Stimulation Target within the Limbic Globus Pallidus Internus for Tourette Syndrome
  • 2017
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger. - 1011-6125 .- 1423-0372. ; 95:4, s. 251-258
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Deep brain stimulation (DBS) in patients with severe, refractory Tourette syndrome (TS) has demonstrated promising but variable results thus far. The thalamus and anteromedial globus pallidus internus (amGPi) have been the most commonly stimulated sites within the cortico-striato thalamic circuit, but an optimal target is yet to be elucidated.OBJECTIVES: This study of 15 patients with long-term amGPi DBS for severe TS investigated whether a specific anatomical site within the amGPi correlated with optimal clinical outcome for the measures of tics, obsessive compulsive behaviour (OCB), and mood.METHODS: Validated clinical assessments were used to measure tics, OCB, quality of life, anxiety, and depression before DBS and at the latest follow-up (17-82 months). Electric field simulations were created for each patient using information on electrode location and individual stimulation parameters. A subsequent regression analysis correlated these patient-specific simulations to percentage changes in outcome measures in order to identify any significant voxels related to clinical improvement.RESULTS: A region within the ventral limbic GPi, specifically on the medial medullary lamina in the pallidum at the level of the AC-PC, was significantly associated with improved tics but not mood or OCB outcome.CONCLUSIONS: This study adds further support to the application of DBS in a tic-related network, though factors such as patient sample size and clinical heterogeneity remain as limitations and replication is required.
  •  
6.
  • Akram, Harith, et al. (författare)
  • Aim for the Suprasternal Notch : Technical Note to Avoid Bowstringing after Deep Brain Stimulation
  • 2015
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger AG. - 1011-6125 .- 1423-0372. ; 93:4, s. 227-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bowstringing may occur when excessive fibrosis develops around extension cables in the neck after deep brain stimulation (DBS) surgery. Though the occurrence of this phenomenon is rare, we have noted that it tends to cause maximal discomfort when the cables cross superficially over the convexity of the clavicle. We hypothesise that bowstringing may be avoided by directing the extension cables towards the suprasternal notch. Methods: When connecting DBS leads to an infraclavicular pectoral implantable pulse generator (IPG), tunnelling is directed towards the suprasternal I notch, before being directed laterally towards the IPG pocket. In previously operated patients with established fibrosis, the fibrous tunnel is opened and excised as far cranially as possible, allowing medial rerouting of cables. Using this approach, we reviewed our series of patients who underwent DBS surgery over 10 years. Results: In 429 patients, 7 patients (2%) with cables tunnelled over the convexity of the clavicle complaining of bowstringing underwent cable exploration and rerouting. This eliminated bowstringing and provided better cosmetic results. When the cable trajectory was initially directed towards the suprasternal notch, no bowstringing was observed. Conclusion:The tunnelling trajectory appears to influence postoperative incidence of fibrosis associated with DBS cables. Modifying the surgical technique may reduce the incidence of this troublesome adverse event. (C) 2015 S.Karger AG, Basel
  •  
7.
  •  
8.
  • Akram, Harith, et al. (författare)
  • Connectivity derived thalamic segmentation in deep brain stimulation for tremor
  • 2018
  • Ingår i: NeuroImage. - : Elsevier. - 2213-1582. ; 18, s. 130-142
  • Tidskriftsartikel (refereegranskat)abstract
    • The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
  •  
9.
  • Akram, Harith, et al. (författare)
  • L-Dopa Responsiveness Is Associated With Distinctive Connectivity Patterns in Advanced Parkinson's Disease
  • 2017
  • Ingår i: Movement Disorders. - : Wiley-Blackwell. - 0885-3185 .- 1531-8257. ; 32:6, s. 874-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. Methods: To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to L-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3x3x2.5mm(3) voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an L-dopa challenge. False discovery rate-corrected P was set at < 0.05 for a 2-tailed t test. Results: A greater improvement in UPDRS-III scores following L-dopa administration was characterized by higher resting-state functional connectivity between the prefrontal cortex and the striatum (P=0.001) and lower resting-state functional connectivity between the pallidum (P=0.001), subthalamic nucleus (P=0.003), and the paracentral lobule (supplementary motor area, mesial primary motor, and primary sensory areas). Conclusions: Our findings show characteristic basal ganglia resting-state functional connectivity patterns associated with different degrees of L-dopa responsiveness in patients with advanced Parkinson's disease. L-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response.
  •  
10.
  • Akram, Harith, et al. (författare)
  • Optimal deep brain stimulation site and target connectivity for chronic cluster headache
  • 2017
  • Ingår i: Neurology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0028-3878 .- 1526-632X. ; 89:20, s. 2083-2091
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate the mechanism of action of deep brain stimulation for refractory chronic cluster headache and the optimal target within the ventral tegmental area. Methods: Seven patients with refractory chronic cluster headache underwent high spatial and angular resolution diffusion MRI preoperatively. MRI-guided and MRI-verified electrode implantation was performed unilaterally in 5 patients and bilaterally in 2. Volumes of tissue activation were generated around active lead contacts with a finite-element model. Twelve months after surgery, voxel-based morphometry was used to identify voxels associated with higher reduction in headache load. Probabilistic tractography was used to identify the brain connectivity of the activation volumes in responders, defined as patients with a reduction of >= 30% in headache load. Results: There was no surgical morbidity. Average follow-up was 34 +/- 14 months. Patients showed reductions of 76 +/- 33% in headache load, 46 +/- 41% in attack severity, 58 +/- 41% in headache frequency, and 51 +/- 46% in attack duration at the last follow-up. Six patients responded to treatment. Greatest reduction in headache load was associated with activation in an area cantered at 6 mm lateral, 2 mm posterior, and 1 mm inferior to the midcommissural point of the third ventricle. Average responders' activation volume lay on the trigeminohypothalamic tract, connecting the trigeminal system and other brainstem nuclei associated with nociception and pain modulation with the hypothalamus, and the prefrontal and mesial temporal areas. Conclusions: We identify the optimal stimulation site and structural connectivity of the deep brain stimulation target for cluster headache, explicating possible mechanisms of action and disease pathophysiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69
Typ av publikation
tidskriftsartikel (56)
konferensbidrag (8)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Zrinzo, Ludvic (61)
Hariz, Marwan (45)
Limousin, Patricia (42)
Foltynie, Thomas (28)
Akram, Harith (24)
Hariz, Marwan I. (22)
visa fler...
Jahanshahi, Marjan (12)
Hyam, Jonathan (10)
Tisch, Stephen (9)
Tripoliti, Elina (8)
Zrinzo, Ludvic U (7)
Joyce, Eileen (6)
Wårdell, Karin, 1959 ... (6)
Foltynie, Tom (6)
Blomstedt, Patric (5)
Dayal, Viswas (5)
Wårdell, Karin (5)
Ashburner, John (4)
Kefalopoulou, Zinovi ... (4)
Åström, Mattias (4)
Milabo, Catherine (4)
Visser-Vandewalle, V ... (4)
Matthews, Keith (3)
Mahlknecht, Philipp (3)
Georgiev, Dejan (3)
De Vita, Enrico (3)
Behrens, Tim (3)
Gratwicke, James (3)
Rajabian, Ali (3)
Wirth, Thomas (2)
Andersson, Mats (2)
Akbarian-Tefaghi, La ... (2)
Johansson, Johannes, ... (2)
Yousry, Tarek (2)
Brown, Peter (2)
Tyagi, Himanshu (2)
Naesström, Matilda (2)
Cappon, Davide (2)
Hu, Wei (2)
Candelario, Joseph (2)
Hamani, Clement (2)
Nuttin, Bart (2)
Litvak, Vladimir (2)
Ashkan, Keyoumars (2)
Aviles-Olmos, Iciar (2)
Salazar, Maricel (2)
Candelario-McKeown, ... (2)
Athauda, Dilan (2)
Thornton, John (2)
Mallet, Luc (2)
visa färre...
Lärosäte
Umeå universitet (62)
Linköpings universitet (10)
Karolinska Institutet (1)
Språk
Engelska (68)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (52)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy