SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zumpf Colleen) "

Sökning: WFRF:(Zumpf Colleen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Englund, Oskar, et al. (författare)
  • Multifunctional perennial production systems for bioenergy: performance and progress
  • 2020
  • Ingår i: Wiley Interdisciplinary Reviews. - : Wiley. - 2041-8396 .- 2041-840X.
  • Tidskriftsartikel (refereegranskat)abstract
    • As the global population increases and becomes more affluent, biomass demands for food and biomaterials will increase. Demand growth is further accelerated by the implementation of climate policies and strategies to replace fossil resources with biomass. There are, however, concerns about the size of the prospective biomass demand and the environmental and social consequences of the corresponding resource mobilization, especially concerning impacts from the associated land-use change. Strategically integrating perennials into landscapes dominated by intensive agriculture can, for example, improve biodiversity, reduce soil erosion and nutrient emissions to water, increase soil carbon, enhance pollination, and avoid or mitigate flooding events. Such ?multifunctional perennial production systems? can thus contribute to improving overall land-use sustainability, while maintaining or increasing overall biomass productivity in the landscape. Seven different cases in different world regions are here reviewed to exemplify and evaluate (a) multifunctional production systems that have been established to meet emerging bioenergy demands, and (b) efforts to identify locations where the establishment of perennial crops will be particularly beneficial. An important barrier towards wider implementation of multifunctional systems is the lack of markets, or policies, compensating producers for enhanced ecosystem services and other environmental benefits. This deficiency is particularly important since prices for fossil-based fuels are low relative to bioenergy production costs. Without such compensation, multifunctional perennial production systems will be unlikely to contribute to the development of a sustainable bioeconomy.
  •  
2.
  • Vera, Ivan, et al. (författare)
  • Land use for bioenergy : Synergies and trade-offs between sustainable development goals
  • 2022
  • Ingår i: Renewable & sustainable energy reviews. - : Elsevier BV. - 1364-0321 .- 1879-0690. ; 161, s. 112409-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioenergy aims to reduce greenhouse gas (GHG) emissions and contribute to meeting global climate change mitigation targets. Nevertheless, several sustainability concerns are associated with bioenergy, especially related to the impacts of using land for dedicated energy crop production. Cultivating energy crops can result in synergies or trade-offs between GHG emission reductions and other sustainability effects depending on context specific conditions. Using the United Nations Sustainable Development Goals (SDGs) framework, the main synergies and trade-offs associated with land use for dedicated energy crop production were identified. Furthermore, the context-specific conditions (i.e., biomass feedstock, previous land use, climate, soil type and agricultural management) which affect those synergies and trade-offs were also identified. The most recent literature was reviewed and a pairwise comparison between GHG emission reduction (SDG 13) and other SDGs was carried out. A total of 427 observations were classified as either synergy (170), trade-off (176), or no effect (81). Most synergies with environmentally-related SDGs, such as water quality and biodiversity conservation, were observed when perennial crops were produced on arable land, pasture or marginal land in the 'cool temperate moist' climate zone and 'high activity clay' soils. Most trade-offs were related to food security and water availability. Previous land use and feedstock type are more impactful in determining synergies and tradeoffs than climatic zone and soil type. This study highlights the importance of considering context-specific conditions in evaluating synergies and trade-offs and their relevance for developing appropriate policies and practices to meet worldwide demand for bioenergy in a sustainable manner.
  •  
3.
  • Zalesny, Ronald S., et al. (författare)
  • Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies
  • 2019
  • Ingår i: Wiley Interdisciplinary Reviews: Energy and Environment. - : Wiley. - 2041-8396 .- 2041-840X. ; 8:5
  • Forskningsöversikt (refereegranskat)abstract
    • The production of short rotation woody crops (SRWCs) such as poplars and willows is a promising component of global bioenergy and phytotechnology portfolios. In addition to the provision of biomass feedstocks and pollution remediation, these trees and shrubs have been sustainably grown to conserve or utilize water in a variety of applications. Growing these woody plants for multiple uses supports many of the United Nation's Sustainable Development Goals (SDGs), especially Clean Water and Sanitation (SDG6) and Affordable and Clean Energy (SDG7). As a result, focusing on ecosystem services such as freshwater and biomass has become an important aspect of deploying these production systems across variable landscapes. The current review consists of an introduction of ecosystem services and the SDGs, as well as SRWCs and their applications. The middle section of the review contains case studies highlighting the positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. The review concludes with a section that combines the common themes that are consistent among the case studies to address options for integrating new bioenergy feedstock production systems into rural and urban landscapes to promote environmental, social and economic sustainability. This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy