SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zwintz K.) "

Sökning: WFRF:(Zwintz K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
2.
  • Boyarchuk, A. A., et al. (författare)
  • Scientific problems addressed by the Spektr-UV space project (world space Observatory-Ultraviolet)
  • 2016
  • Ingår i: Astronomy reports (Print). - 1063-7729 .- 1562-6881. ; 60:1, s. 1-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory-Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115-310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.
  •  
3.
  • Pablo, H., et al. (författare)
  • epsilon Lupi : measuring the heartbeat of a doubly magnetic massive binary with BRITE Constellation
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 488:1, s. 64-77
  • Tidskriftsartikel (refereegranskat)abstract
    • epsilon Lupi A is a binary system consisting of two main-sequence early B-type stars Aa and Ab in a short period, moderately eccentric orbit. The close binary pair is the only doubly magnetic massive binary currently known. Using photometric data from the BRITE Constellation we identify a modest heartbeat variation. Combining the photometry with radial velocities of both components we determine a full orbital solution including empirical masses and radii. These results are compared with stellar evolution models as well as interferometry and the differences discussed. We also find additional photometric variability at several frequencies, finding it unlikely these frequencies can be caused by tidally excited oscillations. We do, however, determine that these signals are consistent with gravity mode pulsations typical for slowly pulsating B stars. Finally we discuss how the evolution of this system will be affected by magnetism, determining that tidal interactions will still be dominant.
  •  
4.
  • Serenelli, Aldo, et al. (författare)
  • Weighing stars from birth to death : mass determination methods across the HRD
  • 2021
  • Ingår i: Astronomy and Astrophysics Review. - : Springer Science and Business Media LLC. - 0935-4956 .- 1432-0754. ; 29:1
  • Forskningsöversikt (refereegranskat)abstract
    • The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 , 2] % for the covered mass range of M∈[0.1,16]M⊙, 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a “mass-ladder” for stars.
  •  
5.
  • Weiss, W. W., et al. (författare)
  • New BRITE-Constellation observations of the roAp star α Cir⋆
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Chemically peculiar (CP) stars with a measurable magnetic field comprise the group of mCP stars. The pulsating members define the subgroup of rapidly oscillating Ap (roAp) stars, of which alpha Cir is the brightest member. Hence, alpha Cir allows the application of challenging techniques, such as interferometry, very high temporal and spectral resolution photometry, and spectroscopy in a wide wavelength range, that have the potential to provide unique information about the structure and evolution of a star.Aims. Based on new photometry from BRITE-Constellation, obtained with blue and red filters, and on photometry from WIRE, SMEI, and TESS we attempt to determine the surface spot structure of alpha Cir and investigate pulsation frequencies.Methods. We used photometric surface imaging and frequency analyses and Bayesian techniques in order to quantitatively compare the probability of different models.Results. BRITE-Constellation photometry obtained from 2014 to 2016 is put in the context of space photometry obtained by WIRE, SMEI, and TESS. This provides improvements in the determination of the rotation period and surface features (three spots detected and a fourth one indicated). The main pulsation frequencies indicate two consecutive radial modes and one intermediate dipolar mode. Advantages and problems of the applied Bayesian technique are discussed.
  •  
6.
  • Zwintz, K., et al. (författare)
  • beta Cas : The first ffi Scuti star with a dynamo magnetic field
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. F-type stars are characterised by several physical processes such as different pulsation mechanisms, rotation, convection, diffusion, and magnetic fields. The rapidly rotating delta Scuti star beta Cas can be considered as a benchmark star to study the interaction of several of these effects.Aims. We investigate the pulsational and magnetic field properties of beta Cas. We also determine the star's apparent fundamental parameters and chemical abundances.Methods. Based on photometric time series obtained from three different space missions (BRITE-Constellation, SMEI, and TESS), we conduct a frequency analysis and investigate the stability of the pulsation amplitudes over four years of observations. We investigate the presence of a magnetic field and its properties using spectropolarimetric observations taken with the Narval instrument by applying the least-squares deconvolution and Zeeman-Doppler imaging techniques.Results. The star beta Cas shows only three independent p-mode frequencies down to the few ppm-level; its highest amplitude frequency is suggested to be an n=3, l=2, m=0 mode. Its magnetic field structure is quite complex and almost certainly of a dynamo origin. The atmosphere of beta Cas is slightly deficient in iron peak elements and slightly overabundant in C, O, and heavier elements.Conclusions. Atypically for delta Scuti stars, we can only detect three pulsation modes down to exceptionally low noise levels for beta Cas. The star is also one of very few delta Scuti pulsators known to date to show a measurable magnetic field and the first delta Scuti star with a dynamo magnetic field. These characteristics make beta Cas an interesting target for future studies of dynamo processes in the thin convective envelopes of F-type stars, the transition region between fossil and dynamo fields, and the interaction between pulsations and magnetic field.
  •  
7.
  • Zwintz, K., et al. (författare)
  • The Magnetic delta Scuti Star beta Cas
  • 2019
  • Ingår i: <em></em>Physics of Magnetic Stars. - : ASTRONOMICAL SOC PACIFIC. - 9781583819241 - 9781583819234 ; , s. 59-64
  • Konferensbidrag (refereegranskat)abstract
    • We study the pulsational, atmospheric, and magnetic properties of the evolved delta Scuti star beta Cas using a combination of multiple seasons of BRITE-Constellation and SMEI space photometry and multiple-epoch spectropolarimetric observations conducted with the Narval instrument at the Telescope Bernard Lyot in France.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy