SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Groot Bert L.) "

Sökning: WFRF:(de Groot Bert L.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2012
  • Ingår i: The European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6052. ; 72:10
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • de Maré, Sofia W., et al. (författare)
  • Structural Basis for Glycerol Efflux and Selectivity of Human Aquaporin 7
  • 2020
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126. ; 28:2, s. 3-222
  • Tidskriftsartikel (refereegranskat)abstract
    • AQP7 is an important glycerol channel in human adipocytes, and its dysfunction is linked to metabolic disorders. The high-resolution X-ray structures of AQP7 unravels the molecular details of how glycerol travels through the channel and provide a structural basis for development of small-molecule drugs for targeting AQP7.
  •  
3.
  • Aponte-Santamaria, Camilo, et al. (författare)
  • Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin
  • 2010
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 12:35, s. 10246-10254
  • Tidskriftsartikel (refereegranskat)abstract
    • The aquaglyceroporin from Plasmodium falciparum (PfAQP) is a potential drug target for the treatment of malaria. It efficiently conducts water and other small solutes, and is proposed to intervene in several crucial physiological processes during the parasitic life cycle. Despite the wealth of experimental data available, a dynamical and energetic description at the single-molecule level of the solute permeation through PfAQP has been lacking so far. Here we address this question by using equilibrium and umbrella sampling molecular dynamics simulations. We computed the water osmotic permeability coefficient, the pore geometry and the potential of mean force for the permeation of water, glycerol and urea. Our simulations show that the PfAQP, the human aquaporin 1 (hAQP1) and the Escherichia coli glycerol facilitator (GlpF) have nearly identical water permeabilities. The Arg196 residue at the ar/R region was found to play a crucial role regulating the permeation of water, glycerol and urea. The computed free energy barriers at the ar/R selectivity filter corroborate that PfAQP conducts glycerol at higher rates than urea, and suggest that PfAQP is a more efficient glycerol and urea channel than GlpF. Our results are consistent with a solute permeation mechanism for PfAQP which is similar to the one established for other members of the aquaglyceroporin family. In this mechanism, hydrophobic regions near the NPA motifs are the main water rate limiting barriers, and the replacement of water-arg196 interactions and solute-matching in the hydrophobic pocket at the ar/R region are the main determinants underlying selectivity for the permeation of solutes like glycerol and urea.
  •  
4.
  • Blau, Christian, et al. (författare)
  • Gromaps: A Gromacs-Based Toolset to Analyse Density Maps Derived from Molecular Dynamics Simulations
  • 2019
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 116:1, s. 4-11
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a computational toolset, named GROmaρs, to obtain and compare time-averaged density maps from molecular dynamics simulations. GROmaρs efficiently computes density maps by fast multi-Gaussian spreading of atomic densities onto a three-dimensional grid. It complements existing map-based tools by enabling spatial inspection of atomic average localization during the simulations. Most importantly, it allows the comparison between computed and reference maps (e.g., experimental) through calculation of difference maps and local and time-resolved global correlation. These comparison operations proved useful to quantitatively contrast perturbed and control simulation data sets and to examine how much biomolecular systems resemble both synthetic and experimental density maps. This was especially advantageous for multimolecule systems in which standard comparisons like RMSDs are difficult to compute. In addition, GROmaρs incorporates absolute and relative spatial free-energy estimates to provide an energetic picture of atomistic localization. This is an open-source GROMACS-based toolset, thus allowing for static or dynamic selection of atoms or even coarse-grained beads for the density calculation. Furthermore, masking of regions was implemented to speed up calculations and to facilitate the comparison with experimental maps. Beyond map comparison, GROmaρs provides a straightforward method to detect solvent cavities and average charge distribution in biomolecular systems. We employed all these functionalities to inspect the localization of lipid and water molecules in aquaporin systems, the binding of cholesterol to the G protein coupled chemokine receptor type 4, and the identification of permeation pathways through the dermicidin antimicrobial channel. Based on these examples, we anticipate a high applicability of GROmaρs for the analysis of molecular dynamics simulations and their comparison with experimentally determined densities.
  •  
5.
  • Boukharta, Lars, et al. (författare)
  • Computer Simulations of Structure-Activity Relationships for hERG Channel Blockers
  • 2011
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 50:27, s. 6146-6156
  • Tidskriftsartikel (refereegranskat)abstract
    • The hERG potassium channel is of major pharmaceutical importance, and its blockade by various compounds, potentially causing serious cardiac side effects, is a major problem in drug development. Despite the large amounts of existing biochemical data on blockade of hERG by drugs and druglike compounds, relatively little is known regarding the structural basis of binding of blockers to the channel. Here, we have used a recently developed homology model of hERG to conduct molecular docking experiments with a series of channel blockers, followed by molecular dynamics simulations of the complexes and evaluation of binding free energies with the linear interaction energy method. The calculations yield a remarkably good agreement with experimental binding affinities and allow for a rationalization of three-dimensional structure-activity relationships in terms of a number of key interactions. Two main interaction regions of the channel are thus identified with implications for further mutagenesis experiments and design of new compounds.
  •  
6.
  • Chakrabarti, Kalyan S., et al. (författare)
  • A litmus test for classifying recognition mechanisms of transiently binding proteins
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Partner recognition in protein binding is critical for all biological functions, and yet, delineating its mechanism is challenging, especially when recognition happens within microseconds. We present a theoretical and experimental framework based on straight-forward nuclear magnetic resonance relaxation dispersion measurements to investigate protein binding mechanisms on sub-millisecond timescales, which are beyond the reach of standard rapid-mixing experiments. This framework predicts that conformational selection prevails on ubiquitin’s paradigmatic interaction with an SH3 (Src-homology 3) domain. By contrast, the SH3 domain recognizes ubiquitin in a two-state binding process. Subsequent molecular dynamics simulations and Markov state modeling reveal that the ubiquitin conformation selected for binding exhibits a characteristically extended C-terminus. Our framework is robust and expandable for implementation in other binding scenarios with the potential to show that conformational selection might be the design principle of the hubs in protein interaction networks.
  •  
7.
  • Fischer, Gerhard, 1978, et al. (författare)
  • Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism.
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins are transmembrane proteins that facilitate the flow of water through cellular membranes. An unusual characteristic of yeast aquaporins is that they frequently contain an extended N terminus of unknown function. Here we present the X-ray structure of the yeast aquaporin Aqy1 from Pichia pastoris at 1.15 A resolution. Our crystal structure reveals that the water channel is closed by the N terminus, which arranges as a tightly wound helical bundle, with Tyr31 forming H-bond interactions to a water molecule within the pore and thereby occluding the channel entrance. Nevertheless, functional assays show that Aqy1 has appreciable water transport activity that aids survival during rapid freezing of P. pastoris. These findings establish that Aqy1 is a gated water channel. Mutational studies in combination with molecular dynamics simulations imply that gating may be regulated by a combination of phosphorylation and mechanosensitivity.
  •  
8.
  • Gapsys, Vytautas, et al. (författare)
  • Accurate absolute free energies for ligand-protein binding based on non-equilibrium approaches
  • 2021
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular dynamics-based approaches to calculate absolute protein-ligand binding free energy often rely on equilibrium free energy perturbation (FEP) protocols. Here, the authors study ligands binding to bromodomains and T4 lysozyme and find that both equilibrium and non-equilibrium approaches converge to the same results with the non-equilibrium method converging faster than FEP. The accurate calculation of the binding free energy for arbitrary ligand-protein pairs is a considerable challenge in computer-aided drug discovery. Recently, it has been demonstrated that current state-of-the-art molecular dynamics (MD) based methods are capable of making highly accurate predictions. Conventional MD-based approaches rely on the first principles of statistical mechanics and assume equilibrium sampling of the phase space. In the current work we demonstrate that accurate absolute binding free energies (ABFE) can also be obtained via theoretically rigorous non-equilibrium approaches. Our investigation of ligands binding to bromodomains and T4 lysozyme reveals that both equilibrium and non-equilibrium approaches converge to the same results. The non-equilibrium approach achieves the same level of accuracy and convergence as an equilibrium free energy perturbation (FEP) method enhanced by Hamiltonian replica exchange. We also compare uni- and bi-directional non-equilibrium approaches and demonstrate that considering the work distributions from both forward and reverse directions provides substantial accuracy gains. In summary, non-equilibrium ABFE calculations are shown to yield reliable and well-converged estimates of protein-ligand binding affinity.
  •  
9.
  • Huang, Peng, et al. (författare)
  • Molecular basis for human aquaporin inhibition
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 1091-6490. ; 121:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer invasion and metastasis are known to be potentiated by the expression of aquaporins (AQPs). Likewise, the expression levels of AQPs have been shown to be prognostic for survival in patients and have a role in tumor growth, edema, angiogenesis, and tumor cell migration. Thus, AQPs are key players in cancer biology and potential targets for drug development. Here, we present the single-particle cryo-EM structure of human AQP7 at 3.2-Å resolution in complex with the specific inhibitor compound Z433927330. The structure in combination with MD simulations shows that the inhibitor binds to the endofacial side of AQP7. In addition, cancer cells treated with Z433927330 show reduced proliferation. The data presented here serve as a framework for the development of AQP inhibitors.
  •  
10.
  • Hub, Jochen S., et al. (författare)
  • g_wham-A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates
  • 2010
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 6:12, s. 3713-3720
  • Tidskriftsartikel (refereegranskat)abstract
    • The Weighted Histogram Analysis Method (WHAM) is a standard technique used to compute potentials of mean force (PMFs) from a set of umbrella sampling simulations. Here, we present a new WHAM implementation, termed g_wham, which is distributed freely with the GROMACS molecular simulation suite. g_wham estimates statistical errors using the technique of bootstrap analysis. Three bootstrap methods are supported: (i) bootstrapping new trajectories based on the umbrella histograms, (ii) bootstrapping of complete histograms, and (iii) Bayesian bootstrapping of complete histograms, that is, bootstrapping via the assignment of random weights to the histograms. Because methods ii and iii consider only complete histograms as independent data points, these methods do not require the accurate calculation of autocorrelation times. We demonstrate that, given sufficient sampling, bootstrapping new trajectories allows for an accurate error estimate. In the presence of long autocorrelations, however, (Bayesian) bootstrapping of complete histograms yields a more reliable error estimate, whereas bootstrapping of new trajectories may underestimate the error. In addition, we emphasize that the incorporation of autocorrelations into WHAM reduces the bias from limited sampling, in particular, when computing periodic PMFs in inhomogeneous systems such as solvated lipid membranes or protein channels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy