SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Jong Jasper) "

Sökning: WFRF:(de Jong Jasper)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abreu-Vieira, Gustavo, et al. (författare)
  • Cidea improves the metabolic profile through expansion of adipose tissue
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • In humans, Cidea (cell death-inducing DNA fragmentation factor alpha-like effector A) is highly but variably expressed in white fat, and expression correlates with metabolic health. Here we generate transgenic mice expressing human Cidea in adipose tissues (aP2-hCidea mice) and show that Cidea is mechanistically associated with a robust increase in adipose tissue expandability. Under humanized conditions (thermoneutrality, mature age and prolonged exposure to high-fat diet), aP2-hCidea mice develop a much more pronounced obesity than their wild-type littermates. Remarkably, the malfunctioning of visceral fat normally caused by massive obesity is fully overcome-perilipin 1 and Akt expression are preserved, tissue degradation is prevented, macrophage accumulation is decreased and adiponectin expression remains high. Importantly, the aP2-hCidea mice display enhanced insulin sensitivity. Our data establish a functional role for Cidea and suggest that, in humans, the association between Cidea levels in white fat and metabolic health is not only correlative but also causative.
  •  
2.
  • Bokhari, Muhammad Hamza, et al. (författare)
  • Isothermal microcalorimetry measures UCP1-mediated thermogenesis in mature brite adipocytes
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The activation of thermogenesis in adipose tissue has emerged as an important target for the development of novel anti-obesity therapies. Using multi-well isothermal microcalorimetry, we have demonstrated that mature murine brown and brite adipocytes produce quantifiable heat upon β3-AR stimulation, independently of any anaerobic mechanisms. Additionally, in brite adipocytes lacking UCP1 protein, β3-AR stimulation still induces heat production, albeit to a much lower extent than in their wildtype counterparts, suggesting that UCP1 is an essential component of adrenergic induced thermogenesis in murine brite adipocytes exvivo. Similarly, we could observe an increase in heat production in human-derived adipocytes (hMADS) upon β-AR stimulation. Collectively, these results establish the use of isothermal microcalorimetry as a sensitive and accurate technique for measuring thermogenic responses in intact mature brite adipocytes from murine and human origin.
  •  
3.
  • Cannon, Barbara, et al. (författare)
  • Human brown adipose tissue : Classical brown rather than brite/beige?
  • 2020
  • Ingår i: Experimental Physiology. - 0958-0670 .- 1469-445X. ; 105:8, s. 1191-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • New Findings What is the topic of this review? It has been suggested that human brown adipose tissue (BAT) is more similar to the brite/beige adipose tissue of mice than to classical BAT of mice. The basis of this is discussed in relationship to the physiological conditions of standard experimental mice.
  •  
4.
  •  
5.
  •  
6.
  • de Jong, Jasper M. A., et al. (författare)
  • A stringent validation of mouse adipose tissue identity markers
  • 2015
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 308:12, s. E1085-E1105
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.
  •  
7.
  • de Jong, Jasper M. A., et al. (författare)
  • Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice
  • 2019
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:8, s. 830-843
  • Tidskriftsartikel (refereegranskat)abstract
    • Human and rodent brown adipose tissues (BAT) appear morphologically and molecularly different. Here we compare human BAT with both classical brown and brite/beige adipose tissues of 'physiologically humanized' mice: middle-aged mice living under conditions approaching human thermal and nutritional conditions, that is, prolonged exposure to thermoneutral temperature (approximately 30 degrees C) and to an energy-rich (high-fat, high-sugar) diet. We find that the morphological, cellular and molecular characteristics (both marker and adipose-selective gene expression) of classical brown fat, but not of brite/beige fat, of these physiologically humanized mice are notably similar to human BAT. We also demonstrate, both in silico and experimentally, that in physiologically humanized mice only classical BAT possesses a high thermogenic potential. These observations suggest that classical rodent BAT is the tissue of choice for translational studies aimed at recruiting human BAT to counteract the development of obesity and its comorbidities.
  •  
8.
  • de Jong, Jasper M. A., et al. (författare)
  • Promotion of lipid storage rather than of thermogenic competence by fetal versus newborn calf serum in primary cultures of brown adipocytes
  • 2018
  • Ingår i: Adipocyte. - : Informa UK Limited. - 2162-3945 .- 2162-397X. ; 7:3, s. 166-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Much current understanding of brown adipocyte development comes from in-vitro cell models. Serum type may affect the behavior of cultured cells and thus conclusions drawn. Here, we investigate effects of serum type (fetal bovine versus newborn calf) on responses to differentiation inducers (the PPAR agonist rosiglitazone or the neurotransmitter norepinephrine) in cultured primary brown adipocytes. Lipid storage was enhanced by fetal versus newborn serum. However, molecular adipose conversion (Pparg2 and Fabp4 expression) was not affected by serum type. Rosiglitazone-induced (7-days) expression of thermogenic genes (i.e. Ucp1, Pgc1a, Dio2 and Elovl3) was not systematically affected by serum type. However, importantly, acute (2h) norepinephrine-induced thermogenic gene expression was overall markedly higher (and adipose genes somewhat lower) in cells cultured in newborn serum. Thus, newborn serum promotes thermogenic competence, and the use of fetal serum in brown adipocyte cultures (as is often routine) counteracts adequate differentiation. Agents that counteract this inhibition may therefore confoundingly be ascribed genuine thermogenic competence-inducing properties.
  •  
9.
  • de Jong, Jasper M. A., et al. (författare)
  • The β3-adrenergic receptor is dispensable for browning of adipose tissues
  • 2017
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 312:6, s. E508-E518
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β3-adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β3-adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β3-adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β3-adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression (Ucp1, Pgc1a, Dio2 and Cidea) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β3-adrenergic receptor. Experiments with the β3-adrenergic receptor agonist CL-316,243 verified the functional absence of β3-adrenergic signaling in these knockout mice. The β3-adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus, our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β3-adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. This should be taken into account in the increasing number of studies on the induction of browning and their extrapolation to human physiology.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (13)
annan publikation (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Cannon, Barbara (13)
Nedergaard, Jan (13)
de Jong, Jasper M. A ... (10)
Petrovic, Natasa (8)
Fischer, Alexander W ... (5)
de Jong, Jasper (4)
visa fler...
Abreu-Vieira, Gustav ... (2)
Shabalina, Irina G. (2)
Bokhari, Muhammad Ha ... (2)
Boulet, Nathalie (2)
Scheele, Camilla (2)
Löf, Marie (1)
Rydén, Mikael (1)
Mattsson, Charlotte (1)
Laurencikiene, Jurga (1)
Arner, Peter (1)
Kalinovich, Anastasi ... (1)
Bengtsson, Tore (1)
Nedergaard, Jan, Pro ... (1)
Prentice, Ross L. (1)
Nielsen, Soren (1)
Brage, Soren (1)
Kraus, William E. (1)
Neuhouser, Marian L (1)
Ekelund, Ulf (1)
Blanc, Stepháne (1)
Nuutila, Pirjo (1)
Loft, Annika (1)
Dethlefsen, Olga (1)
Schlein, Christian (1)
Heeren, Joerg (1)
Bovet, Pascal (1)
Sardinha, Luis B. (1)
Møller, Kirsten (1)
Halleskog, Carina (1)
Åslund, Alice (1)
Casadesús Rendos, Ev ... (1)
de Jong, Jasper Mart ... (1)
Csikasz, Robert (1)
Amri, Ez-Zoubir (1)
Shabalina, Irina (1)
Cinti, Saverio (1)
Gurven, Michael (1)
Forrester, Terrence (1)
Peijs, Lone (1)
Cooper, Richard (1)
Fischer, Alexander (1)
von Essen, Gabriella (1)
Larsson, Ola (1)
Sun, Wenfei (1)
visa färre...
Lärosäte
Stockholms universitet (17)
Karolinska Institutet (4)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy