SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Koning Tom) "

Sökning: WFRF:(de Koning Tom)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Manry, Jérémy, et al. (författare)
  • The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies.
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
  •  
2.
  • van Noort, Suus A M, et al. (författare)
  • Early onset ataxia with comorbid myoclonus and epilepsy : A disease spectrum with shared molecular pathways and cortico-thalamo-cerebellar network involvement
  • 2023
  • Ingår i: European Journal of Paediatric Neurology. - 1090-3798. ; 45, s. 47-54
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Early onset ataxia (EOA) concerns a heterogeneous disease group, often presenting with other comorbid phenotypes such as myoclonus and epilepsy. Due to genetic and phenotypic heterogeneity, it can be difficult to identify the underlying gene defect from the clinical symptoms. The pathological mechanisms underlying comorbid EOA phenotypes remain largely unknown. The aim of this study is to investigate the key pathological mechanisms in EOA with myoclonus and/or epilepsy.METHODS: For 154 EOA-genes we investigated (1) the associated phenotype (2) reported anatomical neuroimaging abnormalities, and (3) functionally enriched biological pathways through in silico analysis. We assessed the validity of our in silico results by outcome comparison to a clinical EOA-cohort (80 patients, 31 genes).RESULTS: EOA associated gene mutations cause a spectrum of disorders, including myoclonic and epileptic phenotypes. Cerebellar imaging abnormalities were observed in 73-86% (cohort and in silico respectively) of EOA-genes independently of phenotypic comorbidity. EOA phenotypes with comorbid myoclonus and myoclonus/epilepsy were specifically associated with abnormalities in the cerebello-thalamo-cortical network. EOA, myoclonus and epilepsy genes shared enriched pathways involved in neurotransmission and neurodevelopment both in the in silico and clinical genes. EOA gene subgroups with myoclonus and epilepsy showed specific enrichment for lysosomal and lipid processes.CONCLUSIONS: The investigated EOA phenotypes revealed predominantly cerebellar abnormalities, with thalamo-cortical abnormalities in the mixed phenotypes, suggesting anatomical network involvement in EOA pathogenesis. The studied phenotypes exhibit a shared biomolecular pathogenesis, with some specific phenotype-dependent pathways. Mutations in EOA, epilepsy and myoclonus associated genes can all cause heterogeneous ataxia phenotypes, which supports exome sequencing with a movement disorder panel over conventional single gene panel testing in the clinical setting.
  •  
3.
  • Koens, Lisette H, et al. (författare)
  • How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach
  • 2021
  • Ingår i: Parkinsonism & Related Disorders. - : Elsevier BV. - 1873-5126 .- 1353-8020. ; 85, s. 124-132
  • Forskningsöversikt (refereegranskat)abstract
    • We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.
  •  
4.
  • Mposhi, Archibold, et al. (författare)
  • The Mitochondrial Epigenome : An Unexplored Avenue to Explain Unexplained Myopathies?
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.
  •  
5.
  • Nanetti, Lorenzo, et al. (författare)
  • Child-to-adult transition : a survey of current practices within the European Reference Network for Rare Neurological Diseases (ERN-RND)
  • 2024
  • Ingår i: Neurological Sciences. - 1590-1874. ; 45:3, s. 1007-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Transition from child-centered to adult-centered healthcare is a gradual process that addresses the medical, psychological, and educational needs of young people in the management of their autonomy in making decisions about their health and their future clinical assistance. This transfer is challenging across all chronic diseases but can be particularly arduous in rare neurological conditions. Aim: To describe the current practice on the transition process for young patients in centers participating in the European Reference Network for Rare Neurological Diseases (ERN-RND). Methods: Members of the ERN-RND working group developed a questionnaire considering child-to-adult transition issues and procedures in current clinical practice. The questionnaire included 20 questions and was sent to members of the health care providers (HCPs) participating in the network. Results: Twenty ERN-RND members (75% adult neurologists; 25% pediatricians; 5% nurses or study coordinators) responded to the survey, representing 10 European countries. Transition usually occurs between 16 and 18 years of age, but 55% of pediatric HCPs continue to care for their patients until they reach 40 years of age or older. In 5/20 ERN-RND centers, a standardized procedure managing transition is currently adopted, whereas in the remaining centers, the transition from youth to adult service is usually assisted by pediatricians as part of their clinical practice. Conclusions: This survey demonstrated significant variations in clinical practice between different centers within the ERN-RND network. It provided valuable data on existing transition programs and highlighted key challenges in managing transitions for patients with rare neurological disorders.
  •  
6.
  • Polet, Sjoukje S., et al. (författare)
  • A detailed description of the phenotypic spectrum of North Sea Progressive Myoclonus Epilepsy in a large cohort of seventeen patients
  • 2020
  • Ingår i: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 72, s. 44-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In 2011, a homozygous mutation in GOSR2 (c.430G > T; p. Gly144Trp) was reported as a novel cause of Progressive Myoclonus Epilepsy (PME) with early-onset ataxia. Interestingly, the ancestors of patients originate from countries bound to the North Sea, hence the condition was termed North Sea PME (NSPME). Until now, only 20 patients have been reported in literature. Here, we provide a detailed description of clinical and neurophysiological data of seventeen patients. Methods: We collected clinical and neurophysiological data from the medical records of seventeen NSPME patients (5–46 years). In addition, we conducted an interview focused on factors influencing myoclonus severity. Results: The core clinical features of NSPME are early-onset ataxia, myoclonus and seizures, with additionally areflexia and scoliosis. Factors such as fever, illness, heat, emotions, stress, noise and light (flashes) all exacerbated myoclonic jerks. Epilepsy severity ranged from the absence of or incidental clinical seizures to frequent daily seizures and status epilepticus. Some patients made use of a wheelchair during their first decade, whereas others still walked independently during their third decade. Neurophysiological features suggesting neuromuscular involvement in NSPME were variable, with findings ranging from indicative of sensory neuronopathy and anterior horn cell involvement to an isolated absent H-reflex. Conclusion: Although the sequence of symptoms is rather homogeneous, the severity of symptoms and rate of progression varied considerably among individual patients. Common triggers for myoclonus can be identified and myoclonus is difficult to treat; to what extent neuromuscular involvement contributes to the phenotype remains to be further elucidated.
  •  
7.
  • Timmers, Elze R., et al. (författare)
  • Dopaminergic and serotonergic alterations in plasma in three groups of dystonia patients
  • 2021
  • Ingår i: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 91, s. 48-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. Methods: Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. Results: A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 μmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = −0.3, p < 0.01), depression (rs = −0.3, p < 0.01) and fatigue (rs = −0.2, p = 0.04). Conclusion: This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options.
  •  
8.
  • Timmers, Elze R, et al. (författare)
  • Gut Microbiome Composition in Dystonia Patients
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 24:3, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Dystonia is a movement disorder in which patients have involuntary abnormal movements or postures. Non-motor symptoms, such as psychiatric symptoms, sleep problems and fatigue, are common. We hypothesise that the gut microbiome might play a role in the pathophysiology of the (non-)motor symptoms in dystonia via the gut-brain axis. This exploratory study investigates the composition of the gut microbiome in dystonia patients compared to healthy controls. Furthermore, the abundance of neuro-active metabolic pathways, which might be implicated in the (non-)motor symptoms, was investigated. We performed both metagenomic and 16S rRNA sequencing on the stool samples of three subtypes of dystonia (27 cervical dystonia, 20 dopa-responsive dystonia and 24 myoclonus-dystonia patients) and 25 controls. While microbiome alpha and beta diversity was not different between dystonia patients and controls, dystonia patients had higher abundances of Ruminococcus torques and Dorea formicigenerans, and a lower abundance of Butyrivibrio crossotus compared to controls. For those with dystonia, non-motor symptoms and the levels of neurotransmitters in plasma explained the variance in the gut microbiome composition. Several neuro-active metabolic pathways, especially tryptophan degradation, were less abundant in the dystonia patients compared to controls. This suggest that the gut-brain axis might be involved in the pathophysiology of dystonia. Further studies are necessary to confirm our preliminary findings.
  •  
9.
  • Timmers, Elze R, et al. (författare)
  • Methylation of the serotonin reuptake transporter gene and non-motor symptoms in dystonia patients
  • 2022
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 14, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Dystonia is a rare movement disorder, in which patients suffer from involuntary twisting movements or abnormal posturing. Next to these motor symptoms, patients have a high prevalence of psychiatric comorbidity, suggesting a role for serotonin in its pathophysiology. This study investigates the percentage of DNA methylation of the gene encoding for the serotonin reuptake transporter (SLC6A4) in dystonia patients and the associations between methylation levels and presence and severity of psychiatric symptoms.METHODS: Patients with cervical dystonia (n = 49), myoclonus dystonia (n = 41) and dopa-responsive dystonia (DRD) (n = 27) and a group of healthy controls (n = 56) were included. Psychiatric comorbidity was evaluated with validated questionnaires. Methylation levels of 20 CpG sites situated 69 to 213 base pairs upstream of the start codon of SLC6A4 were investigated. Methylation in dystonia patients was compared to healthy controls, correcting for age, and correlated with psychiatric comorbidity.RESULTS: Bootstrapped quantile regression analysis showed that being a dystonia patient compared to a healthy control significantly explains the methylation level at two CpG sites (CpG 24: pseudo-R 2 = 0.05, p = 0.04, CpG 32: pseudo-R 2 = 0.14, p = 0.03). Subgroup analysis revealed that being a DRD patient significantly explained a part of the variance of methylation levels at two CpG sites (CpG 21: pseudo-R 2 = 0.03, p = 0.00, CpG 24: pseudo-R 2 = 0.06, p = 0.03). Regression analysis showed that methylation level at CpG 38 significantly explained a small proportion of the variance of severity score for anxiety (R 2 = 0.07, p = 0.04) and having a diagnosis of depression (Nagelkerke R 2: 0.11, p = 0.00). Genotype of the 5-HTTLPR polymorphism had no additional effect on these associations. CONCLUSIONS: This study showed an association between percentage of methylation at several specific sites of the promoter region of SLCA64 and (dopa-responsive) dystonia patients compared to healthy controls. Furthermore, methylation levels were associated with severity of anxiety and presence of a depressive disorder in the dystonia group. This study suggests alterations in the serotonergic metabolism in dystonia patients, and its relation with the non-motor symptoms.
  •  
10.
  • Timmers, Elze R., et al. (författare)
  • Serotonergic system in vivo with [11C]DASB PET scans in GTP-cyclohydrolase deficient dopa-responsive dystonia patients
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • GTP-cyclohydrolase deficiency in dopa-responsive dystonia (DRD) patients impairs the biosynthesis of dopamine, but also of serotonin. The high prevalence of non-motor symptoms suggests involvement of the serotonergic pathway. Our study aimed to investigate the serotonergic system in vivo in the brain of`DRD patients and correlate this to (non-)motor symptoms. Dynamic [11C]DASB PET scans, a marker of serotonin transporter availability, were performed. Ten DRD, 14 cervical dystonia patients and 12 controls were included. Univariate- and network-analysis did not show differences in binding between DRD patients compared to controls. Sleep disturbances were correlated with binding in the dorsal raphe nucleus (all participants: rs = 0.45, p = 0.04; patients: rs = 0.64, p = 0.05) and participants with a psychiatric disorder had a lower binding in the hippocampus (all participants: p = 0.00; patients: p = 0.06). Post-hoc analysis with correction for psychiatric co-morbidity showed a significant difference in binding in the hippocampus between DRD patients and controls (p = 0.00). This suggests that psychiatric symptoms might mask the altered serotonergic metabolism in DRD patients, but definite conclusions are difficult as psychiatry is considered part of the phenotype. We hypothesize that an imbalance between different neurotransmitter systems is responsible for the non-motor symptoms, and further research investigating multiple neurotransmitters and psychiatry in DRD is necessary.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy